IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1250-d679150.html
   My bibliography  Save this article

Application of Harmony Search Algorithm to Slope Stability Analysis

Author

Listed:
  • Sina Shaffiee Haghshenas

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

  • Sami Shaffiee Haghshenas

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

  • Zong Woo Geem

    (College of IT Convergence, Gachon University, Seongnam 13120, Korea)

  • Tae-Hyung Kim

    (Department of Civil Engineering, Korea Maritime and Ocean University, Pusan 49112, Korea)

  • Reza Mikaeil

    (Department of Mining and Engineering, Faculty of Environment, Urmia University of Technology, Urmia, Iran)

  • Luigi Pugliese

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

  • Antonello Troncone

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

Abstract

Slope stability analysis is undoubtedly one of the most complex problems in geotechnical engineering and its study plays a paramount role in mitigating the risk associated with the occurrence of a landslide. This problem is commonly tackled by using limit equilibrium methods or advanced numerical techniques to assess the slope safety factor or, sometimes, even the displacement field of the slope. In this study, as an alternative approach, an attempt to assess the stability condition of homogeneous slopes was made using a machine learning (ML) technique. Specifically, a meta-heuristic algorithm (Harmony Search (HS) algorithm) and K-means algorithm were employed to perform a clustering analysis by considering two different classes, depending on whether a slope was unstable or stable. To achieve the purpose of this study, a database made up of 19 case studies with 6 model inputs including unit weight, intercept cohesion, angle of shearing resistance, slope angle, slope height and pore pressure ratio and one output (i.e., the slope safety factor) was established. Referring to this database, 17 out of 19 slopes were categorized correctly. Moreover, the obtained results showed that, referring to the considered database, the intercept cohesion was the most significant parameter in defining the class of each slope, whereas the unit weight had the smallest influence. Finally, the obtained results showed that the Harmony Search algorithm is an efficient approach for training K-means algorithms.

Suggested Citation

  • Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Zong Woo Geem & Tae-Hyung Kim & Reza Mikaeil & Luigi Pugliese & Antonello Troncone, 2021. "Application of Harmony Search Algorithm to Slope Stability Analysis," Land, MDPI, vol. 10(11), pages 1-12, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1250-:d:679150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reza Mikaeil & Sina Shaffiee Haghshenas & Zoheir Sedaghati, 2019. "Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1099-1113, July.
    2. Francesco Paola & Maurizio Giugni & Davide Portolano, 2017. "Pressure Management Through Optimal Location and Setting of Valves in Water Distribution Networks Using a Music-Inspired Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1517-1533, March.
    3. Kapil Gnawali & Kuk Heon Han & Zong Woo Geem & Kyung Soo Jun & Kyung Taek Yum, 2019. "Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    4. Zaobao Liu & Jianfu Shao & Weiya Xu & Hongjie Chen & Yu Zhang, 2014. "An extreme learning machine approach for slope stability evaluation and prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 787-804, September.
    5. P. Lu & M. Rosenbaum, 2003. "Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 383-398, November.
    6. Giuseppe Guido & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Alessandro Vitale & Vittorio Astarita & Ashkan Shafiee Haghshenas, 2020. "Feasibility of Stochastic Models for Evaluation of Potential Factors for Safety: A Case Study in Southern Italy," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    7. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daxing Lei & Yaoping Zhang & Zhigang Lu & Hang Lin & Zheyuan Jiang, 2024. "Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
    2. He Jia & Sherong Zhang & Chao Wang & Xiaohua Wang & Zhonggang Ma & Yaosheng Tan, 2023. "MSC-1DCNN-based homogeneous slope stability state prediction method integrated with empirical data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 729-753, August.
    3. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    4. Yukun Yang & Wei Zhou & Izhar Mithal Jiskani & Xiang Lu & Zhiming Wang & Boyu Luan, 2023. "Slope Stability Prediction Method Based on Intelligent Optimization and Machine Learning Algorithms," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    5. Arsalan Mahmoodzadeh & Mokhtar Mohammadi & Hunar Farid Hama Ali & Hawkar Hashim Ibrahim & Sazan Nariman Abdulhamid & Hamid Reza Nejati, 2022. "Prediction of safety factors for slope stability: comparison of machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1771-1799, March.
    6. Arunava Ray & Vikash Kumar & Amit Kumar & Rajesh Rai & Manoj Khandelwal & T. N. Singh, 2020. "Stability prediction of Himalayan residual soil slope using artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3523-3540, September.
    7. Behrouz Pirouz & Sina Shaffiee Haghshenas & Behzad Pirouz & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Development of an Assessment Method for Investigating the Impact of Climate and Urban Parameters in Confirmed Cases of COVID-19: A New Challenge in Sustainable Development," IJERPH, MDPI, vol. 17(8), pages 1-17, April.
    8. Behrouz Pirouz & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Investigating a Serious Challenge in the Sustainable Development Process: Analysis of Confirmed cases of COVID-19 (New Type of Coronavirus) Through a Binary Classification Using Artificial Intelligenc," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    9. Giuseppe Guido & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Alessandro Vitale & Vincenzo Gallelli & Vittorio Astarita, 2020. "Development of a Binary Classification Model to Assess Safety in Transportation Systems Using GMDH-Type Neural Network Algorithm," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    10. Ahmed Hassan Saad & Haslinda Nahazanan & Badronnisa Yusuf & Siti Fauziah Toha & Ahmed Alnuaim & Ahmed El-Mouchi & Mohamed Elseknidy & Angham Ali Mohammed, 2023. "A Systematic Review of Machine Learning Techniques and Applications in Soil Improvement Using Green Materials," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    11. Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
    12. Qi Da & Ying Chen & Bing Dai & Danli Li & Longqiang Fan, 2024. "Prediction of Slope Safety Factor Based on Attention Mechanism-Enhanced CNN-GRU," Sustainability, MDPI, vol. 16(15), pages 1-23, July.
    13. Mehdi Dini & Asghar Asadi, 2020. "Optimal Operational Scheduling of Available Partially Closed Valves for Pressure Management in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2571-2583, June.
    14. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    15. Min-Yuan Cheng & Nhat-Duc Hoang, 2015. "Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1961-1978, September.
    16. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    17. Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
    18. Leilei Liu & Guoyan Zhao & Weizhang Liang, 2023. "Slope Stability Prediction Using k -NN-Based Optimum-Path Forest Approach," Mathematics, MDPI, vol. 11(14), pages 1-31, July.
    19. Pizzolato, Alberto & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Centralized control of district heating networks during failure events using discrete adjoint sensitivities," Energy, Elsevier, vol. 184(C), pages 58-72.
    20. Roberto del Teso & Elena Gómez & Elvira Estruch-Juan & Enrique Cabrera, 2019. "Topographic Energy Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4385-4400, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1250-:d:679150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.