IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i1d10.1007_s11069-023-06026-6.html
   My bibliography  Save this article

MSC-1DCNN-based homogeneous slope stability state prediction method integrated with empirical data

Author

Listed:
  • He Jia

    (Tianjin University
    Tianjin University)

  • Sherong Zhang

    (Tianjin University
    Tianjin University)

  • Chao Wang

    (Tianjin University
    Tianjin University)

  • Xiaohua Wang

    (Tianjin University
    Tianjin University)

  • Zhonggang Ma

    (Tianjin University
    Tianjin University
    CCTEB Infrastructure Construction Investment Co., Ltd.)

  • Yaosheng Tan

    (China Three Gorges Group Corporation)

Abstract

The mechanism of slope stability prediction is formulated based on its material, geometrical and environmental situation, and slope stability prediction has been accepted as a tool for analyzing and predicting future structure stability based on geotechnical properties and failure mechanisms. However, the study of slope instability is complex and usually difficult to explain by mathematical methods. The number of slope cases limits the accuracy of slope stability prediction, and the variability of soil or rock parameters of slopes poses new challenges for prediction using conventional algorithms. To improve the accuracy of slope stability state prediction, this paper proposes an efficient slope stability state prediction method with a highly robust convolutional neural network named the multiscale, multichannel, one-dimensional convolutional neural network (MSC-1DCNN) and substantial empirical data collected worldwide. The collected dataset is amplified. Additionally, the probability of failure is calculated considering the variability of soil or rock parameters. Compared with some state-of-the-art prediction methods, the MSC-1DCNN presents high prediction accuracy. The proposed method is applied to a slope, and the results indicate that this paper provides a reliable slope stability state prediction method for homogeneous slopes worldwide.

Suggested Citation

  • He Jia & Sherong Zhang & Chao Wang & Xiaohua Wang & Zhonggang Ma & Yaosheng Tan, 2023. "MSC-1DCNN-based homogeneous slope stability state prediction method integrated with empirical data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 729-753, August.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06026-6
    DOI: 10.1007/s11069-023-06026-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06026-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06026-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaobao Liu & Jianfu Shao & Weiya Xu & Hongjie Chen & Yu Zhang, 2014. "An extreme learning machine approach for slope stability evaluation and prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 787-804, September.
    2. P. Lu & M. Rosenbaum, 2003. "Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 383-398, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    2. Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Zong Woo Geem & Tae-Hyung Kim & Reza Mikaeil & Luigi Pugliese & Antonello Troncone, 2021. "Application of Harmony Search Algorithm to Slope Stability Analysis," Land, MDPI, vol. 10(11), pages 1-12, November.
    3. Daxing Lei & Yaoping Zhang & Zhigang Lu & Hang Lin & Zheyuan Jiang, 2024. "Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
    4. Arsalan Mahmoodzadeh & Mokhtar Mohammadi & Hunar Farid Hama Ali & Hawkar Hashim Ibrahim & Sazan Nariman Abdulhamid & Hamid Reza Nejati, 2022. "Prediction of safety factors for slope stability: comparison of machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1771-1799, March.
    5. Arunava Ray & Vikash Kumar & Amit Kumar & Rajesh Rai & Manoj Khandelwal & T. N. Singh, 2020. "Stability prediction of Himalayan residual soil slope using artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3523-3540, September.
    6. Ahmed Hassan Saad & Haslinda Nahazanan & Badronnisa Yusuf & Siti Fauziah Toha & Ahmed Alnuaim & Ahmed El-Mouchi & Mohamed Elseknidy & Angham Ali Mohammed, 2023. "A Systematic Review of Machine Learning Techniques and Applications in Soil Improvement Using Green Materials," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    7. Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
    8. Qi Da & Ying Chen & Bing Dai & Danli Li & Longqiang Fan, 2024. "Prediction of Slope Safety Factor Based on Attention Mechanism-Enhanced CNN-GRU," Sustainability, MDPI, vol. 16(15), pages 1-23, July.
    9. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    10. Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
    11. Mansheng Lin & Limei Zeng & Shuai Teng & Gongfa Chen & Bo Hu, 2024. "Prediction of stability of a slope with weak layers using convolutional neural networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 12081-12105, October.
    12. Jamil Amanollahi & Shahram Kaboodvandpour & Hiva Majidi, 2017. "Evaluating the accuracy of ANN and LR models to estimate the water quality in Zarivar International Wetland, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1511-1527, February.
    13. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    14. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    15. Chonghao Zhu & Jianjing Zhang & Yang Liu & Donghua Ma & Mengfang Li & Bo Xiang, 2020. "Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 173-204, January.
    16. Zaiwu Gong & Caiqin Chen & Xinming Ge, 2014. "Risk prediction of low temperature in Nanjing city based on grey weighted Markov model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1159-1180, March.
    17. Sami Ullah & Muhib Ullah Khan & Gohar Rehman, 2020. "A Brief Review of the Slope Stability Analysis Methods," Geological Behavior (GBR), Zibeline International Publishing, vol. 4(2), pages 73-77:4, May.
    18. Zaobao Liu & Jianfu Shao & Weiya Xu & Hongjie Chen & Yu Zhang, 2014. "An extreme learning machine approach for slope stability evaluation and prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 787-804, September.
    19. Min-Yuan Cheng & Nhat-Duc Hoang, 2015. "Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1961-1978, September.
    20. Leilei Liu & Guoyan Zhao & Weizhang Liang, 2023. "Slope Stability Prediction Using k -NN-Based Optimum-Path Forest Approach," Mathematics, MDPI, vol. 11(14), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06026-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.