IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v100y2020i1d10.1007_s11069-019-03806-x.html
   My bibliography  Save this article

Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China

Author

Listed:
  • Chonghao Zhu

    (Southwest Jiaotong University)

  • Jianjing Zhang

    (Southwest Jiaotong University)

  • Yang Liu

    (Southwest Jiaotong University)

  • Donghua Ma

    (Southwest Jiaotong University)

  • Mengfang Li

    (Southwest Jiaotong University
    Highway Planning, Survey, Design and Research Institute of Sichuan Provincial Department of Transportation)

  • Bo Xiang

    (Highway Planning, Survey, Design and Research Institute of Sichuan Provincial Department of Transportation)

Abstract

With the increase in inclement weather conditions, many countries would experience more and more landslide hazards in the process of planning, designing and construction for engineering projects, especially in the mountainous regions. How to quickly and accurately assess potential landslide risk in a large region (> 10,000 km2) is facing challenge due to its complex geological conditions and large amount of landslides in the region. To optimize the accuracy of the existing models for a large region, in this study, the genetic algorithm (GA) and particle swarm optimization (PSO) are, respectively, coupled with the backpropagation (BP) neural network to determine the initial weights and thresholds in the BP neural network, which can be called GA-BP model and PSO-BP model. To show the reliability and accuracy of the new models in large region, the BP, GA-BP and PSO-BP models are evaluated based on root mean square error (RMSE), coefficient of determination (R2), Kappa coefficient (k), receiver operating characteristic (ROC), training time and condition factor weights by using 100 landslide samples from Sichuan Province, China. Results show that the RMSE values of the GA-BP model and the PSO model are, respectively, 22.6% and 5.1% lower than those of the BP model; the R2 values of the GA-BP model and the PSO model are, respectively, 24.9% and 6.2% higher than those of the BP model; the k values of the GA-BP model and the PSO model are, respectively, 44.3% and 15.4% higher than those of the BP model, and the areas under ROC of the GA-BP model and the PSO model are, respectively, 32.4% and 9.6% larger than those of the BP model. The GA-BP model and the PSO-BP model have better accuracy in the assessment of the overall risk value and the risk-level classification. The difference of the training time is small, and the sequences of condition factor weights given by the three models are consistent. In general, the GA-BP model is more effective for landslide risk assessment in large region. At last, this study gives proposed models under different engineering conditions, which can increase efficiency of the risk assessment for landslides.

Suggested Citation

  • Chonghao Zhu & Jianjing Zhang & Yang Liu & Donghua Ma & Mengfang Li & Bo Xiang, 2020. "Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 173-204, January.
  • Handle: RePEc:spr:nathaz:v:100:y:2020:i:1:d:10.1007_s11069-019-03806-x
    DOI: 10.1007/s11069-019-03806-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03806-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03806-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    2. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    3. Chun Liu & Weiyue Li & Hangbin Wu & Ping Lu & Kai Sang & Weiwei Sun & Wen Chen & Yang Hong & Rongxing Li, 2013. "Susceptibility evaluation and mapping of China’s landslides based on multi-source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1477-1495, December.
    4. P. Lu & M. Rosenbaum, 2003. "Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 383-398, November.
    5. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javed Mallick & Saeed Alqadhi & Swapan Talukdar & Majed AlSubih & Mohd. Ahmed & Roohul Abad Khan & Nabil Ben Kahla & Saud M. Abutayeh, 2021. "Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    2. Chenhui Wang & Wei Guo, 2023. "Prediction of Landslide Displacement Based on the Variational Mode Decomposition and GWO-SVR Model," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Ying Chen & Shirui Chen & Zhengyu Wu & Bing Dai & Longhua Xv & Guicai Wu, 2022. "Optimization of Genetic Algorithm through Use of Back Propagation Neural Network in Forecasting Smooth Wall Blasting Parameters," Mathematics, MDPI, vol. 10(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    2. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    3. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    4. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    5. Chen Cao & Jianping Chen & Wen Zhang & Peihua Xu & Lianjing Zheng & Chun Zhu, 2019. "Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing," IJERPH, MDPI, vol. 16(15), pages 1-19, August.
    6. S. Rolain & M. Alvioli & Q. D. Nguyen & T. L. Nguyen & L. Jacobs & M. Kervyn, 2023. "Influence of landslide inventory timespan and data selection on slope unit-based susceptibility models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2227-2244, September.
    7. Arunava Ray & Vikash Kumar & Amit Kumar & Rajesh Rai & Manoj Khandelwal & T. N. Singh, 2020. "Stability prediction of Himalayan residual soil slope using artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3523-3540, September.
    8. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    9. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    10. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    11. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Sadhan Malik & Subodh Chandra Pal & Biswajit Das & Rabin Chakrabortty, 2020. "Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5651-5685, August.
    13. Kibeom Kwon & Minkyu Kang & Dongku Kim & Hangseok Choi, 2023. "Prioritization of Hazardous Zones Using an Advanced Risk Management Model Combining the Analytic Hierarchy Process and Fuzzy Set Theory," Sustainability, MDPI, vol. 15(15), pages 1-15, August.
    14. Wenqun Xiu & Shuying Wang & Wenguang Qi & Xue Li & Chisheng Wang, 2021. "Disaster Chain Analysis of Landfill Landslide: Scenario Simulation and Chain-Cutting Modeling," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    15. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    16. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    17. Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
    18. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    19. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.
    20. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:100:y:2020:i:1:d:10.1007_s11069-019-03806-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.