Penalized estimation of flexible hidden Markov models for time series of counts
Author
Abstract
Suggested Citation
DOI: 10.1007/s40300-019-00153-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
- Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015.
"Multilevel multivariate modelling of legislative count data, with a hidden Markov chain,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 705-723, June.
- Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015. "Multilevel multivariate modelling of legislative count data, with a hidden Markov chain," Post-Print halshs-01246575, HAL.
- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
- G. Alexandrovich & H. Holzmann & A. Leister, 2016. "Nonparametric identification and maximum likelihood estimation for hidden Markov models," Biometrika, Biometrika Trust, vol. 103(2), pages 423-434.
- Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
- J. Hambuckers & T. Kneib & R. Langrock & A. Silbersdorff, 2018. "A Markov-switching generalized additive model for compound Poisson processes, with applications to operational loss models," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1679-1698, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maxime Faymonville & Carsten Jentsch & Christian H. Weiß & Boris Aleksandrov, 2023. "Semiparametric estimation of INAR models using roughness penalization," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 365-400, June.
- Jan Bulla & Roland Langrock & Antonello Maruotti, 2019. "Guest editor’s introduction to the special issue on “Hidden Markov Models: Theory and Applications”," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 63-66, August.
- Pohle, Jennifer & Adam, Timo & Beumer, Larissa T., 2022. "Flexible estimation of the state dwell-time distribution in hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Morteza Amini & Afarin Bayat & Reza Salehian, 2023. "hhsmm: an R package for hidden hybrid Markov/semi-Markov models," Computational Statistics, Springer, vol. 38(3), pages 1283-1335, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
- Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
- Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
- De Gooijer, Jan G. & Henter, Gustav Eje & Yuan, Ao, 2022. "Kernel-based hidden Markov conditional densities," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
- Peijie Wang & Hui Zhao & Jianguo Sun, 2016. "Regression analysis of case K interval‐censored failure time data in the presence of informative censoring," Biometrics, The International Biometric Society, vol. 72(4), pages 1103-1112, December.
- François Facchini & Elena Seghezza, 2021.
"Legislative production and public spending in France,"
Public Choice, Springer, vol. 189(1), pages 71-91, October.
- François Facchini & Elena Seghezza, 2021. "Legislative production and public spending in France," Post-Print hal-03051879, HAL.
- François Facchini & Elena Seghezza, 2021. "Legislative production and public spending in France," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03051879, HAL.
- Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
- Lagona, Francesco & Padovano, Fabio, 2021.
"How does legislative behavior change when the country becomes democratic? The case of South Korea,"
European Journal of Political Economy, Elsevier, vol. 69(C).
- Francesco Lagona & Fabio Padovano, 2020. "How does legislative behavior change when the country becomes democratic? The case of South Korea," Economics Working Paper from Condorcet Center for political Economy at CREM-CNRS 2020-02-ccr, Condorcet Center for political Economy.
- F. Lagona & Fabio Padovano, 2021. "How does legislative behavior change when the country becomes democratic? The case of South Korea," Post-Print hal-03225568, HAL.
- Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
- Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
- Floriane Cardiec & Sophie Bertrand & Matthew J Witt & Kristian Metcalfe & Brendan J Godley & Catherine McClellan & Raul Vilela & Richard J Parnell & François le Loc’h, 2020. "“Too Big To Ignore”: A feasibility analysis of detecting fishing events in Gabonese small-scale fisheries," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
- Ngandu Balekelayi & Solomon Tesfamariam, 2020. "Geoadditive Quantile Regression Model for Sewer Pipes Deterioration Using Boosting Optimization Algorithm," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
- Francesca Biagini & Tobias Huber & Johannes G. Jaspersen & Andrea Mazzon, 2021. "Estimating extreme cancellation rates in life insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 971-1000, December.
- Francesco Bartolucci & Alessio Farcomeni, 2022. "A hidden Markov space–time model for mapping the dynamics of global access to food," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 246-266, January.
- Morteza Amini & Afarin Bayat & Reza Salehian, 2023. "hhsmm: an R package for hidden hybrid Markov/semi-Markov models," Computational Statistics, Springer, vol. 38(3), pages 1283-1335, September.
- Michela Gnaldi & Simone Del Sarto, 2024. "Validating Corruption Risk Measures: A Key Step to Monitoring SDG Progress," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 175(3), pages 1045-1071, December.
- Anton Gerunov, 2023. "Stock Returns Under Different Market Regimes: An Application of Markov Switching Models to 24 European Indices," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 18-35.
- Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
More about this item
Keywords
Count data; Nonparametric statistics; Penalized likelihood; Smoothing parameter selection; State-space model; Time series modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:77:y:2019:i:2:d:10.1007_s40300-019-00153-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.