IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i3d10.1007_s00180-022-01248-x.html
   My bibliography  Save this article

hhsmm: an R package for hidden hybrid Markov/semi-Markov models

Author

Listed:
  • Morteza Amini

    (University of Tehran)

  • Afarin Bayat

    (University of Tehran)

  • Reza Salehian

    (University of Tehran)

Abstract

This paper introduces the hhsmm R package, which involves functions for initializing, fitting, and predication of hidden hybrid Markov/semi-Markov models. These models are flexible models with both Markovian and semi-Markovian states, which are applied to situations where the model involves absorbing or macro-states. The left-to-right models and the models with series/parallel networks of states are two models with Markovian and semi-Markovian states. The hhsmm also includes Markov/semi-Markov switching regression model as well as the auto-regressive HHSMM, the nonparametric estimation of the emission distribution using penalized B-splines, prediction of future states and the residual useful lifetime estimation in the predict function. The commercial modular aero-propulsion system simulation (C-MAPSS) data-set is also included in the package, which is used for illustration of the application of the package features. The application of the hhsmm package to the analysis and prediction of the Spain’s energy demand is also presented.

Suggested Citation

  • Morteza Amini & Afarin Bayat & Reza Salehian, 2023. "hhsmm: an R package for hidden hybrid Markov/semi-Markov models," Computational Statistics, Springer, vol. 38(3), pages 1283-1335, September.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:3:d:10.1007_s00180-022-01248-x
    DOI: 10.1007/s00180-022-01248-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01248-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01248-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Timo Adam & Roland Langrock & Christian H. Weiß, 2019. "Penalized estimation of flexible hidden Markov models for time series of counts," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 87-104, August.
    4. Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
    5. Francesco Cartella & Jan Lemeire & Luca Dimiccoli & Hichem Sahli, 2015. "Hidden Semi-Markov Models for Predictive Maintenance," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-23, February.
    6. Bulla, Jan & Bulla, Ingo & Nenadic, Oleg, 2010. "hsmm -- An R package for analyzing hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 611-619, March.
    7. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    8. Visser, Ingmar & Speekenbrink, Maarten, 2010. "depmixS4: An R Package for Hidden Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    2. Pohle, Jennifer & Adam, Timo & Beumer, Larissa T., 2022. "Flexible estimation of the state dwell-time distribution in hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    3. Jan Bulla & Roland Langrock & Antonello Maruotti, 2019. "Guest editor’s introduction to the special issue on “Hidden Markov Models: Theory and Applications”," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 63-66, August.
    4. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    5. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    6. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    7. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    8. Fédéric Holm-Hadulla & Kirstin Hubrich, 2017. "Macroeconomic Implications of Oil Price Fluctuations : A Regime-Switching Framework for the Euro Area," Finance and Economics Discussion Series 2017-063, Board of Governors of the Federal Reserve System (U.S.).
    9. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    10. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    11. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    12. Houda Rharrabti Zaid, 2015. "Transmission du stress financier de la zone euro aux Pays de l’Europe Centrale et Orientale," EconomiX Working Papers 2015-37, University of Paris Nanterre, EconomiX.
    13. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    14. repec:wsr:wpaper:y:2010:i:057 is not listed on IDEAS
    15. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    16. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    17. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    18. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    19. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    20. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    21. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:3:d:10.1007_s00180-022-01248-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.