IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v15y2013i1d10.1007_s11009-011-9226-y.html
   My bibliography  Save this article

Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate

Author

Listed:
  • Kaiyong Wang

    (Soochow University
    Suzhou University of Science and Technology)

  • Yuebao Wang

    (Soochow University)

  • Qingwu Gao

    (Soochow University
    Nanjing Audit University)

Abstract

This paper gives an asymptotically equivalent formula for the finite-time ruin probability of a nonstandard risk model with a constant interest rate, in which both claim sizes and inter-arrival times follow a certain dependence structure. This new dependence structure allows the underlying random variables to be either positively or negatively dependent. The obtained asymptotics hold uniformly in a finite time interval. Especially, in the renewal risk model the uniform asymptotics of the finite-time ruin probability for all times have been given. The obtained results have extended and improved some corresponding results.

Suggested Citation

  • Kaiyong Wang & Yuebao Wang & Qingwu Gao, 2013. "Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 109-124, March.
  • Handle: RePEc:spr:metcap:v:15:y:2013:i:1:d:10.1007_s11009-011-9226-y
    DOI: 10.1007/s11009-011-9226-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-011-9226-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-011-9226-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
    2. Kong, Fanchao & Zong, Gaofeng, 2008. "The finite-time ruin probability for ND claims with constant interest force," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3103-3109, December.
    3. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    4. Chen, Yiqing & Ng, Kai W., 2007. "The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 415-423, May.
    5. Hao, Xuemiao & Tang, Qihe, 2008. "A uniform asymptotic estimate for discounted aggregate claims with subexponential tails," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 116-120, August.
    6. Liu, Li, 2009. "Precise large deviations for dependent random variables with heavy tails," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1290-1298, May.
    7. Kalashnikov, Vladimir & Konstantinides, Dimitrios, 2000. "Ruin under interest force and subexponential claims: a simple treatment," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 145-149, August.
    8. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Mengmeng & Miao, Yu, 2023. "Generalized weak laws of large numbers in Hilbert spaces," Statistics & Probability Letters, Elsevier, vol. 197(C).
    2. Yang Yang & Xinzhi Wang & Xiaonan Su & Aili Zhang, 2019. "Asymptotic Behavior of Ruin Probabilities in an Insurance Risk Model with Quasi-Asymptotically Independent or Bivariate Regularly Varying-Tailed Main Claim and By-Claim," Complexity, Hindawi, vol. 2019, pages 1-6, October.
    3. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    4. Chen, Pingyan & Sung, Soo Hak, 2019. "A Spitzer-type law of large numbers for widely orthant dependent random variables," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    5. Yi Wu & Xuejun Wang & Aiting Shen, 2023. "Strong Convergence for Weighted Sums of Widely Orthant Dependent Random Variables and Applications," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-28, March.
    6. Xin Deng & Xuejun Wang, 2020. "An exponential inequality and its application to M estimators in multiple linear models," Statistical Papers, Springer, vol. 61(4), pages 1607-1627, August.
    7. Jin Yu Zhou & Ji Gao Yan & Fei Du, 2023. "Complete and Complete f -Moment Convergence for Arrays of Rowwise END Random Variables and Some Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1307-1330, August.
    8. Xuejun Wang & Chen Xu & Tien-Chung Hu & Andrei Volodin & Shuhe Hu, 2014. "On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 607-629, September.
    9. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    10. Mengmei Xi & Rui Wang & Zhaoyang Cheng & Xuejun Wang, 2020. "Some convergence properties for partial sums of widely orthant dependent random variables and their statistical applications," Statistical Papers, Springer, vol. 61(4), pages 1663-1684, August.
    11. Shijie Wang & Yueli Yang & Yang Liu & Lianqiang Yang, 2023. "Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-13, September.
    12. Xuejun Wang & Xin Deng & Shuhe Hu, 2018. "On consistency of the weighted least squares estimators in a semiparametric regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 797-820, October.
    13. Hongyan Fang & Saisai Ding & Xiaoqin Li & Wenzhi Yang, 2020. "Asymptotic Approximations of Ratio Moments Based on Dependent Sequences," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    14. Edita Kizinevič & Jonas Šiaulys, 2018. "The Exponential Estimate of the Ultimate Ruin Probability for the Non-Homogeneous Renewal Risk Model," Risks, MDPI, vol. 6(1), pages 1-17, March.
    15. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
    16. Gao, Qingwu & Lin, Jia’nan & Liu, Xijun, 2023. "Large deviations of aggregate amount of claims in compound risk model with arbitrary dependence between claim sizes and waiting times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    17. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    18. Aiting Shen & Huiling Tao & Xuejun Wang, 2020. "The asymptotic properties for the estimators of the survival function and failure rate function based on WOD samples," Statistical Papers, Springer, vol. 61(6), pages 2671-2684, December.
    19. Fu, Ke-Ang & Liu, Yang & Wang, Jiangfeng, 2022. "Precise large deviations in a bidimensional risk model with arbitrary dependence between claim-size vectors and waiting times," Statistics & Probability Letters, Elsevier, vol. 184(C).
    20. Xin Deng & Xuejun Wang, 2018. "Asymptotic Property of M Estimator in Classical Linear Models Under Dependent Random Errors," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1069-1090, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    2. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2017. "Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 227-235.
    3. Liu, Xijun & Gao, Qingwu & Wang, Yuebao, 2012. "A note on a dependent risk model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 707-712.
    4. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
    5. Peng, Jiangyan & Huang, Jin, 2010. "Ruin probability in a one-sided linear model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 662-669, April.
    6. Gao Qingwu & Gu Peng & Jin Na, 2012. "Asymptotic Behavior of the Finite-Time Ruin Probability with Constant Interest Force and WUOD Heavy-Tailed Claims," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 6(1), pages 1-16, February.
    7. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    8. Chen, Yiqing & Ng, Kai W., 2007. "The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 415-423, May.
    9. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    10. Wei, Li, 2009. "Ruin probability in the presence of interest earnings and tax payments," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 133-138, August.
    11. Yang, Haizhong & Sun, Suting, 2013. "Subexponentiality of the product of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2039-2044.
    12. Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
    13. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    14. Chen, Yiqing & Yuan, Zhongyi, 2017. "A revisit to ruin probabilities in the presence of heavy-tailed insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 75-81.
    15. Yang, Yang & Wang, Yuebao, 2010. "Asymptotics for ruin probability of some negatively dependent risk models with a constant interest rate and dominatedly-varying-tailed claims," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 143-154, February.
    16. Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
    17. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    18. Yiqing Chen & Kam C. Yuen & Kai W. Ng, 2011. "Precise Large Deviations of Random Sums in Presence of Negative Dependence and Consistent Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 821-833, December.
    19. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    20. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:15:y:2013:i:1:d:10.1007_s11009-011-9226-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.