IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i2d10.1007_s11009-024-10083-0.html
   My bibliography  Save this article

A Cyclic Random Motion in $$\mathbb {R}^3$$ R 3 Driven by Geometric Counting Processes

Author

Listed:
  • Antonella Iuliano

    (University of Basilicata)

  • Gabriella Verasani

    (University of Basilicata)

Abstract

We consider the random motion of a particle that moves with constant velocity in $$\mathbb {R}^3$$ R 3 . The particle can move along four different directions that are attained cyclically. It follows that the support of the stochastic process describing the particle’s position at a fixed time is a tetrahedron. We assume that the sequence of sojourn times along each direction follows a Geometric Counting Process (GCP). When the initial condition is fixed, we obtain the explicit form of the probability law of the process, for the particle’s position. We also investigate the limiting behavior of the related probability density when the intensities of the four GCPs tend to infinity. Furthermore, we show that the process does not admit a stationary density. Finally, we introduce the first-passage-time problem for the first component of the process through a constant positive boundary providing the bases for future developments.

Suggested Citation

  • Antonella Iuliano & Gabriella Verasani, 2024. "A Cyclic Random Motion in $$\mathbb {R}^3$$ R 3 Driven by Geometric Counting Processes," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-23, June.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:2:d:10.1007_s11009-024-10083-0
    DOI: 10.1007/s11009-024-10083-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10083-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10083-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Beghin & L. Nieddu & E. Orsingher, 2001. "Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations," International Journal of Stochastic Analysis, Hindawi, vol. 14, pages 1-15, January.
    2. Antonio Di Crescenzo & Franco Pellerey, 2019. "Some Results and Applications of Geometric Counting Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 203-233, March.
    3. Orsingher, Enzo, 1990. "Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 49-66, February.
    4. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).
    2. Ratanov, Nikita, 2021. "On telegraph processes, their first passage times and running extrema," Statistics & Probability Letters, Elsevier, vol. 174(C).
    3. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    4. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
    5. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    6. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    7. Cinque, Fabrizio & Orsingher, Enzo, 2023. "Random motions in R3 with orthogonal directions," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 173-200.
    8. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On Properties of the Phase-type Mixed Poisson Process and its Applications to Reliability Shock Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2933-2960, December.
    9. Jiang Hui & Xu Lihu & Yang Qingshan, 2024. "Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3015-3054, November.
    10. Abdolsaeed Toomaj & Antonio Di Crescenzo, 2020. "Connections between Weighted Generalized Cumulative Residual Entropy and Variance," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    11. Enzo Orsingher & Manfred Marvin Marchione, 2025. "Planar Random Motions in a Vortex," Journal of Theoretical Probability, Springer, vol. 38(1), pages 1-42, March.
    12. Claudio Macci & Barbara Martinucci & Enrica Pirozzi, 2021. "Asymptotic Results for the Absorption Time of Telegraph Processes with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1077-1096, September.
    13. Giona, Massimiliano & Venditti, Claudia & Adrover, Alessandra, 2020. "On the long-term simulation of stochastic differential equations for predicting effective dispersion coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    14. Antonio Di Crescenzo & Barbara Martinucci, 2013. "On the Generalized Telegraph Process with Deterministic Jumps," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 215-235, March.
    15. Macci, Claudio, 2016. "Large deviations for some non-standard telegraph processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 119-127.
    16. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    17. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
    18. Antonio Crescenzo & Barbara Martinucci & Paola Paraggio & Shelemyahu Zacks, 2021. "Some Results on the Telegraph Process Confined by Two Non-Standard Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 837-858, September.
    19. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    20. Nikita Ratanov, 2021. "Ornstein-Uhlenbeck Processes of Bounded Variation," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 925-946, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:2:d:10.1007_s11009-024-10083-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.