IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v15y2013i1d10.1007_s11009-011-9235-x.html
   My bibliography  Save this article

On the Generalized Telegraph Process with Deterministic Jumps

Author

Listed:
  • Antonio Di Crescenzo

    (Università di Salerno)

  • Barbara Martinucci

    (Università di Salerno)

Abstract

We consider a semi-Markovian generalization of the integrated telegraph process subject to jumps. It describes a motion on the real line characterized by two alternating velocities with opposite directions, where a jump along the alternating direction occurs at each velocity reversal. We obtain the formal expressions of the forward and backward transition densities of the motion. We express them as series in the case of Erlang-distributed random times separating consecutive jumps. Furthermore, a closed form of the transition density is given for exponentially distributed times, with constant jumps and random initial velocity. In this case we also provide mean and variance of the process, and study the limiting behaviour of the probability law, which leads to a mixture of three Gaussian densities.

Suggested Citation

  • Antonio Di Crescenzo & Barbara Martinucci, 2013. "On the Generalized Telegraph Process with Deterministic Jumps," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 215-235, March.
  • Handle: RePEc:spr:metcap:v:15:y:2013:i:1:d:10.1007_s11009-011-9235-x
    DOI: 10.1007/s11009-011-9235-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-011-9235-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-011-9235-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikita Ratanov, 2007. "A jump telegraph model for option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 575-583.
    2. D. Perry & W. Stadje & S. Zacks, 2005. "A Two-Sided First-Exit Problem for a Compound Poisson Process with a Random Upper Boundary," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 51-62, March.
    3. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
    4. L. Beghin & L. Nieddu & E. Orsingher, 2001. "Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations," International Journal of Stochastic Analysis, Hindawi, vol. 14, pages 1-15, January.
    5. Nikita Ratanov & Alexander Melnikov, 2007. "On Financial Markets Based on Telegraph Processes," Papers 0712.3428, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Crescenzo & Barbara Martinucci & Paola Paraggio & Shelemyahu Zacks, 2021. "Some Results on the Telegraph Process Confined by Two Non-Standard Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 837-858, September.
    2. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
    3. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    4. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).
    5. Enzo Orsingher & Manfred Marvin Marchione, 2025. "Planar Random Motions in a Vortex," Journal of Theoretical Probability, Springer, vol. 38(1), pages 1-42, March.
    6. Nikita Ratanov, 2015. "Telegraph Processes with Random Jumps and Complete Market Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 677-695, September.
    7. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Ratanov, 2021. "Ornstein-Uhlenbeck Processes of Bounded Variation," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 925-946, September.
    2. Alessandro De Gregorio & Stefano Iacus, 2007. "Change point estimation for the telegraph process observed at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1053, Universitá degli Studi di Milano.
    3. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    4. Pierre-Olivier Goffard, 2019. "Fraud risk assessment within blockchain transactions," Working Papers hal-01716687, HAL.
    5. Pierre-O. Goffard, 2019. "Fraud risk assessment within blockchain transactions," Post-Print hal-01716687, HAL.
    6. Antonio Crescenzo & Barbara Martinucci & Paola Paraggio & Shelemyahu Zacks, 2021. "Some Results on the Telegraph Process Confined by Two Non-Standard Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 837-858, September.
    7. Anatoliy A. Pogorui & Anatoliy Swishchuk & Ramón M. Rodríguez-Dagnino, 2021. "Transformations of Telegraph Processes and Their Financial Applications," Risks, MDPI, vol. 9(8), pages 1-21, August.
    8. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    9. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2020. "Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 315-332.
    10. López, Oscar & Oleaga, Gerardo & Sánchez, Alejandra, 2021. "Markov-modulated jump-diffusion models for the short rate: Pricing of zero coupon bonds and convexity adjustment," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    11. Benjamin Avanzi & Debbie Kusch Falden & Mogens Steffensen, 2022. "Stable Dividends under Linear-Quadratic Optimization," Papers 2210.03494, arXiv.org.
    12. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    13. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    14. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    15. López, Oscar & Ratanov, Nikita, 2012. "Kac’s rescaling for jump-telegraph processes," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1768-1776.
    16. Nikita Ratanov & Mikhail Turov, 2023. "On Local Time for Telegraph Processes," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    17. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
    18. Benjamin Avanzi & Jos'e-Luis P'erez & Bernard Wong & Kazutoshi Yamazaki, 2016. "On optimal joint reflective and refractive dividend strategies in spectrally positive L\'evy models," Papers 1607.01902, arXiv.org, revised Nov 2016.
    19. Ratanov, Nikita, 2014. "On piecewise linear processes," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 60-67.
    20. Nikita Ratanov & Alexander Melnikov, 2007. "On Financial Markets Based on Telegraph Processes," Papers 0712.3428, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:15:y:2013:i:1:d:10.1007_s11009-011-9235-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.