IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i3d10.1007_s11009-019-09750-4.html
   My bibliography  Save this article

The Role of Information in System Stability with Partially Observable Servers

Author

Listed:
  • Azam Asanjarani

    (The University of Auckland)

  • Yoni Nazarathy

    (The University of Queensland)

Abstract

We present a methodology for analyzing the role of information on system stability. For this we consider a simple discrete-time controlled queueing system, where the controller has a choice of which server to use at each time slot and server performance varies according to a Markov modulated random environment. At the extreme cases of information availability, that is when there is either full information or no information, stability regions and maximally stabilizing policies are trivial. But in the more realistic cases where only the environment state of the selected server is observed, only the service successes are observed or only queue length is observed, finding throughput maximizing control laws is a challenge. To handle these situations, we devise a Partially Observable Markov Decision Process (POMDP) formulation of the problem and illustrate properties of its solution. We further model the system under given decision rules, using Quasi-Birth-and-Death (QBD) structure to find a matrix analytic expression for the stability bound. We use this formulation to illustrate how the stability region grows as the number of controller belief states increases. The example that we consider in this paper is a case of two servers where the environment of each is modulated like a Gilbert-Elliot channel. As simple as this case seems, there appear to be no closed form descriptions of the stability region under the various regimes considered. However, the numerical approximations to the POMDP Bellman equations together with the numerical solutions of the QBDs, both of which are in agreement, hint at a variety of structural results.

Suggested Citation

  • Azam Asanjarani & Yoni Nazarathy, 2020. "The Role of Information in System Stability with Partially Observable Servers," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 949-968, September.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:3:d:10.1007_s11009-019-09750-4
    DOI: 10.1007/s11009-019-09750-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09750-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09750-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Offer Kella & Ward Whitt, 1992. "A Storage Model with a Two-State Random Environment," Operations Research, INFORMS, vol. 40(3-supplem), pages 257-262, June.
    2. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    3. Ger Koole & Zhen Liu & Rhonda Righter, 2001. "Optimal Transmission Policies for Noisy Channels," Operations Research, INFORMS, vol. 49(6), pages 892-899, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azam Asanjarani & Yoni Nazarathy & Peter Taylor, 2021. "A survey of parameter and state estimation in queues," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 39-80, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanjie & Yin, Baoqun & Xi, Hongsheng, 2011. "Finding optimal memoryless policies of POMDPs under the expected average reward criterion," European Journal of Operational Research, Elsevier, vol. 211(3), pages 556-567, June.
    2. Mohebbi, E., 2008. "A note on a production control model for a facility with limited storage capacity in a random environment," European Journal of Operational Research, Elsevier, vol. 190(2), pages 562-570, October.
    3. Yanling Chang & Alan Erera & Chelsea White, 2015. "Value of information for a leader–follower partially observed Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 129-153, December.
    4. Asmussen, Søren & Schmidt, Volker, 1995. "Ladder height distributions with marks," Stochastic Processes and their Applications, Elsevier, vol. 58(1), pages 105-119, July.
    5. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    6. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    7. N. Bora Keskin & John R. Birge, 2019. "Dynamic Selling Mechanisms for Product Differentiation and Learning," Operations Research, INFORMS, vol. 67(4), pages 1069-1089, July.
    8. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    9. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    10. Chernonog, Tatyana & Avinadav, Tal, 2016. "A two-state partially observable Markov decision process with three actionsAuthor-Name: Ben-Zvi, Tal," European Journal of Operational Research, Elsevier, vol. 254(3), pages 957-967.
    11. Martin Mundhenk, 2000. "The Complexity of Optimal Small Policies," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 118-129, February.
    12. Vikram Krishnamurthy & Bo Wahlberg, 2009. "Partially Observed Markov Decision Process Multiarmed Bandits---Structural Results," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 287-302, May.
    13. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
    14. Kuo, Yarlin, 2006. "Optimal adaptive control policy for joint machine maintenance and product quality control," European Journal of Operational Research, Elsevier, vol. 171(2), pages 586-597, June.
    15. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    16. Bren, Austin & Saghafian, Soroush, 2018. "Data-Driven Percentile Optimization for Multi-Class Queueing Systems with Model Ambiguity: Theory and Application," Working Paper Series rwp18-008, Harvard University, John F. Kennedy School of Government.
    17. Otten, Maarten & Timmer, Judith & Witteveen, Annemieke, 2020. "Stratified breast cancer follow-up using a continuous state partially observable Markov decision process," European Journal of Operational Research, Elsevier, vol. 281(2), pages 464-474.
    18. Mohebbi, Esmail, 2006. "A production-inventory model with randomly changing environmental conditions," European Journal of Operational Research, Elsevier, vol. 174(1), pages 539-552, October.
    19. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    20. Yasemin Serin & Zeynep Muge Avsar, 1997. "Markov decision processes with restricted observations: Finite horizon case," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(5), pages 439-456, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:3:d:10.1007_s11009-019-09750-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.