Ladder height distributions with marks
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Asmussen, Søren & Frey, Andreas & Rolski, Tomasz & Schmidt, Volker, 1995. "Does Markov-Modulation Increase the Risk?," ASTIN Bulletin, Cambridge University Press, vol. 25(1), pages 49-66, May.
- Offer Kella & Ward Whitt, 1992. "A Storage Model with a Two-State Random Environment," Operations Research, INFORMS, vol. 40(3-supplem), pages 257-262, June.
- S. Asmussen & V. Schmidt, 1993. "The ascending ladder height distribution for a certain class of dependent random walks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 47(4), pages 269-277, December.
- Dufresne, Francois & Gerber, Hans U., 1988. "The probability and severity of ruin for combinations of exponential claim amount distributions and their translations," Insurance: Mathematics and Economics, Elsevier, vol. 7(2), pages 75-80, April.
- Dufresne, Francois & Gerber, Hans U., 1988. "The surpluses immediately before and at ruin, and the amount of the claim causing ruin," Insurance: Mathematics and Economics, Elsevier, vol. 7(3), pages 193-199, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Asmussen, Søren & Klüppelberg, Claudia, 1996. "Large deviations results for subexponential tails, with applications to insurance risk," Stochastic Processes and their Applications, Elsevier, vol. 64(1), pages 103-125, November.
- Frey, Andreas & Schmidt, Volker, 1996. "Taylor-series expansion for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 1-12, May.
- Schmidli, Hanspeter, 2001. "Distribution of the first ladder height of a stationary risk process perturbed by [alpha]-stable Lévy motion," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 13-20, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tsai, Cary Chi-Liang, 2003. "On the expectations of the present values of the time of ruin perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 413-429, July.
- Yang, Hailiang & Zhang, Lihong, 2001. "On the distribution of surplus immediately after ruin under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 247-255, October.
- Usabel, M. A., 1999. "A note on the Taylor series expansions for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 37-47, September.
- Cheng, Yebin & Tang, Qihe & Yang, Hailiang, 2002. "Approximations for moments of deficit at ruin with exponential and subexponential claims," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 367-378, October.
- Frey, Andreas & Schmidt, Volker, 1996. "Taylor-series expansion for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 1-12, May.
- Hailiang Yang & Lihong Zhang, 2006. "Ruin problems for a discrete time risk model with random interest rate," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(2), pages 287-299, May.
- Georgios Psarrakos, 2016. "An Operator Property of the Distribution of a Nonhomogeneous Poisson Process with Applications," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 1197-1215, December.
- Mohebbi, E., 2008. "A note on a production control model for a facility with limited storage capacity in a random environment," European Journal of Operational Research, Elsevier, vol. 190(2), pages 562-570, October.
- Loisel, Stéphane & Trufin, Julien, 2014.
"Properties of a risk measure derived from the expected area in red,"
Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
- Stéphane Loisel & Julien Trufin, 2014. "Properties of a risk measure derived from the expected area in red," Post-Print hal-00870224, HAL.
- Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
- Albrecher, Hansjorg & Boxma, Onno J., 2005. "On the discounted penalty function in a Markov-dependent risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 650-672, December.
- Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
- Ambagaspitiya, Rohana S., 2009. "Ultimate ruin probability in the Sparre Andersen model with dependent claim sizes and claim occurrence times," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 464-472, June.
- Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
- Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
- Yang, Hailiang, 2003. "Ruin theory in a financial corporation model with credit risk," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 135-145, August.
- Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
- Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
- Usabel, M. A., 1999. "Practical approximations for multivariate characteristics of risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 397-413, December.
- Romain Gauchon & Stéphane Loisel & Jean-Louis Rullière & Julien Trufin, 2020. "Optimal prevention of large risks with two types of claims," Post-Print hal-02314914, HAL.
More about this item
Keywords
Campbell's formula Fluid models Ladder heights Local time Marked point process Palm distribution Stationarity Stochastic risk theory;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:58:y:1995:i:1:p:105-119. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.