IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v21y1973i5p1071-1088.html
   My bibliography  Save this article

The Optimal Control of Partially Observable Markov Processes over a Finite Horizon

Author

Listed:
  • Richard D. Smallwood

    (Stanford University, Stanford, California, and Xerox Palo Alto Research Center, Palo Alto, California)

  • Edward J. Sondik

    (Stanford University, Stanford, California)

Abstract

This paper formulates the optimal control problem for a class of mathematical models in which the system to be controlled is characterized by a finite-state discrete-time Markov process. The states of this internal process are not directly observable by the controller; rather, he has available a set of observable outputs that are only probabilistically related to the internal state of the system. The formulation is illustrated by a simple machine-maintenance example, and other specific application areas are also discussed. The paper demonstrates that, if there are only a finite number of control intervals remaining, then the optimal payoff function is a piecewise-linear, convex function of the current state probabilities of the internal Markov process. In addition, an algorithm for utilizing this property to calculate the optimal control policy and payoff function for any finite horizon is outlined. These results are illustrated by a numerical example for the machine-maintenance problem.

Suggested Citation

  • Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
  • Handle: RePEc:inm:oropre:v:21:y:1973:i:5:p:1071-1088
    DOI: 10.1287/opre.21.5.1071
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.21.5.1071
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.21.5.1071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:21:y:1973:i:5:p:1071-1088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.