IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i6p830-840.html
   My bibliography  Save this article

Markov decision processes in natural resources management: Observability and uncertainty

Author

Listed:
  • Williams, Byron K.

Abstract

The breadth and complexity of stochastic decision processes in natural resources presents a challenge to analysts who need to understand and use these approaches. The objective of this paper is to describe a class of decision processes that are germane to natural resources conservation and management, namely Markov decision processes, and to discuss applications and computing algorithms under different conditions of observability and uncertainty. A number of important similarities are developed in the framing and evaluation of different decision processes, which can be useful in their applications in natural resources management. The challenges attendant to partial observability are highlighted, and possible approaches for dealing with it are discussed.

Suggested Citation

  • Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:830-840
    DOI: 10.1016/j.ecolmodel.2008.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009000246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rose, Steven K. & Chapman, Duane, 2003. "Timber harvest adjacency economies, hunting, species protection, and old growth value: seeking the dynamic optimum," Ecological Economics, Elsevier, vol. 44(2-3), pages 325-344, March.
    2. George E. Monahan, 1982. "State of the Art---A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms," Management Science, INFORMS, vol. 28(1), pages 1-16, January.
    3. Edward J. Sondik, 1978. "The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs," Operations Research, INFORMS, vol. 26(2), pages 282-304, April.
    4. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    5. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    6. Daniel E. Lane, 1989. "A Partially Observable Model of Decision Making by Fishermen," Operations Research, INFORMS, vol. 37(2), pages 240-254, April.
    7. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Williams, Byron K., 2012. "Reducing uncertainty about objective functions in adaptive management," Ecological Modelling, Elsevier, vol. 225(C), pages 61-65.
    2. do Val, J.B.R. & Guillotreau, P. & Vallée, T., 2019. "Fishery management under poorly known dynamics," European Journal of Operational Research, Elsevier, vol. 279(1), pages 242-257.
    3. Couture, Stéphane & Cros, Marie-Josée & Sabbadin, Régis, 2016. "Risk aversion and optimal management of an uneven-aged forest under risk of windthrow: A Markov decision process approach," Journal of Forest Economics, Elsevier, vol. 25(C), pages 94-114.
    4. Stéphane S. Couture & Marie-Josée Cros & Régis Sabbadin, 2014. "Risk preferences and optimal management of uneven-aged forests in the presence of climate change: a Markov decision process approach," Post-Print hal-02741407, HAL.
    5. Johnson, Fred A. & Jensen, Gitte H. & Madsen, Jesper & Williams, Byron K., 2014. "Uncertainty, robustness, and the value of information in managing an expanding Arctic goose population," Ecological Modelling, Elsevier, vol. 273(C), pages 186-199.
    6. Schapaugh, Adam W. & Tyre, Andrew J., 2013. "Accounting for parametric uncertainty in Markov decision processes," Ecological Modelling, Elsevier, vol. 254(C), pages 15-21.
    7. You, L. & Li, Y.P. & Huang, G.H. & Zhang, J.L., 2014. "Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin," Ecological Modelling, Elsevier, vol. 288(C), pages 127-142.
    8. Zhou, Mo, 2017. "Valuing environmental amenities through inverse optimization: Theory and case study," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 217-230.
    9. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    10. Schuurman, Daniel & Weersink, Alfons & Delaporte, Aaron, 2021. "Optimal Sequential Crop Choices for Soil Carbon Management: A Dynamic Programming Approach," 2021 Annual Meeting, August 1-3, Austin, Texas 314042, Agricultural and Applied Economics Association.
    11. Williams, Byron K. & Eaton, Mitchell J. & Breininger, David R., 2011. "Adaptive resource management and the value of information," Ecological Modelling, Elsevier, vol. 222(18), pages 3429-3436.
    12. David Breininger & Brean Duncan & Mitchell Eaton & Fred Johnson & James Nichols, 2014. "Integrating Land Cover Modeling and Adaptive Management to Conserve Endangered Species and Reduce Catastrophic Fire Risk," Land, MDPI, vol. 3(3), pages 1-24, July.
    13. Williams, Byron K., 2011. "Resolving structural uncertainty in natural resources management using POMDP approaches," Ecological Modelling, Elsevier, vol. 222(5), pages 1092-1102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    2. Williams, Byron K., 2011. "Resolving structural uncertainty in natural resources management using POMDP approaches," Ecological Modelling, Elsevier, vol. 222(5), pages 1092-1102.
    3. Yanling Chang & Alan Erera & Chelsea White, 2015. "Value of information for a leader–follower partially observed Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 129-153, December.
    4. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.
    5. Chernonog, Tatyana & Avinadav, Tal, 2016. "A two-state partially observable Markov decision process with three actionsAuthor-Name: Ben-Zvi, Tal," European Journal of Operational Research, Elsevier, vol. 254(3), pages 957-967.
    6. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
    7. Gong, Linguo & Tang, Kwei, 1997. "Monitoring machine operations using on-line sensors," European Journal of Operational Research, Elsevier, vol. 96(3), pages 479-492, February.
    8. Givon, Moshe & Grosfeld-Nir, Abraham, 2008. "Using partially observed Markov processes to select optimal termination time of TV shows," Omega, Elsevier, vol. 36(3), pages 477-485, June.
    9. V. Makis & X. Jiang, 2003. "Optimal Replacement Under Partial Observations," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 382-394, May.
    10. Armando Z. Milioni & Stanley R. Pliska, 1988. "Optimal inspection under semi‐markovian deterioration: Basic results," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 373-392, October.
    11. Abhijit Gosavi, 2009. "Reinforcement Learning: A Tutorial Survey and Recent Advances," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 178-192, May.
    12. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    14. Grosfeld-Nir, Abraham, 2007. "Control limits for two-state partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 182(1), pages 300-304, October.
    15. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    16. Zong-Zhi Lin & James C. Bean & Chelsea C. White, 2004. "A Hybrid Genetic/Optimization Algorithm for Finite-Horizon, Partially Observed Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 27-38, February.
    17. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    19. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
    20. Serin, Yasemin, 1995. "A nonlinear programming model for partially observable Markov decision processes: Finite horizon case," European Journal of Operational Research, Elsevier, vol. 86(3), pages 549-564, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:830-840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.