IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v211y2011i3p556-567.html
   My bibliography  Save this article

Finding optimal memoryless policies of POMDPs under the expected average reward criterion

Author

Listed:
  • Li, Yanjie
  • Yin, Baoqun
  • Xi, Hongsheng

Abstract

In this paper, partially observable Markov decision processes (POMDPs) with discrete state and action space under the average reward criterion are considered from a recent-developed sensitivity point of view. By analyzing the average-reward performance difference formula, we propose a policy iteration algorithm with step sizes to obtain an optimal or local optimal memoryless policy. This algorithm improves the policy along the same direction as the policy iteration does and suitable step sizes guarantee the convergence of the algorithm. Moreover, the algorithm can be used in Markov decision processes (MDPs) with correlated actions. Two numerical examples are provided to illustrate the applicability of the algorithm.

Suggested Citation

  • Li, Yanjie & Yin, Baoqun & Xi, Hongsheng, 2011. "Finding optimal memoryless policies of POMDPs under the expected average reward criterion," European Journal of Operational Research, Elsevier, vol. 211(3), pages 556-567, June.
  • Handle: RePEc:eee:ejores:v:211:y:2011:i:3:p:556-567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00880-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    2. Hao, Tang & Lei, Zhou & Tamio, Arai, 2008. "Optimization of a special case of continuous-time Markov decision processes with compact action set," European Journal of Operational Research, Elsevier, vol. 187(1), pages 113-119, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Zhang & Sen Tian & Le Li & Zhongbin Wang & Jun Zhang, 2023. "Maintenance analysis of a partial observable K-out-of-N system with load sharing units," Journal of Risk and Reliability, , vol. 237(4), pages 703-713, August.
    2. Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
    3. Yanling Chang & Alan Erera & Chelsea White, 2015. "Value of information for a leader–follower partially observed Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 129-153, December.
    4. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    6. Kirk A. Yost & Alan R. Washburn, 2000. "The LP/POMDP marriage: Optimization with imperfect information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(8), pages 607-619, December.
    7. Bei Zhao & Siwen Zheng & Jianhui Zhang, 2020. "Optimal policy for composite sensing with crowdsourcing," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
    8. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    9. Zong-Zhi Lin & James C. Bean & Chelsea C. White, 2004. "A Hybrid Genetic/Optimization Algorithm for Finite-Horizon, Partially Observed Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 27-38, February.
    10. N. Bora Keskin & John R. Birge, 2019. "Dynamic Selling Mechanisms for Product Differentiation and Learning," Operations Research, INFORMS, vol. 67(4), pages 1069-1089, July.
    11. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    12. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    13. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.
    14. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    15. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    16. Chernonog, Tatyana & Avinadav, Tal, 2016. "A two-state partially observable Markov decision process with three actionsAuthor-Name: Ben-Zvi, Tal," European Journal of Operational Research, Elsevier, vol. 254(3), pages 957-967.
    17. Martin Mundhenk, 2000. "The Complexity of Optimal Small Policies," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 118-129, February.
    18. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
    19. Vikram Krishnamurthy & Bo Wahlberg, 2009. "Partially Observed Markov Decision Process Multiarmed Bandits---Structural Results," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 287-302, May.
    20. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:211:y:2011:i:3:p:556-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.