IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v21y2019i4d10.1007_s11009-019-09735-3.html
   My bibliography  Save this article

Asymptotically Optimal Quickest Change Detection in Multistream Data—Part 1: General Stochastic Models

Author

Listed:
  • Alexander G. Tartakovsky

    (Moscow Institute of Physics and Technology
    AGT StatConsult)

Abstract

Assume that there are multiple data streams (channels, sensors) and in each stream the process of interest produces generally dependent and non-identically distributed observations. When the process is in a normal mode (in-control), the (pre-change) distribution is known, but when the process becomes abnormal there is a parametric uncertainty, i.e., the post-change (out-of-control) distribution is known only partially up to a parameter. Both the change point and the post-change parameter are unknown. Moreover, the change affects an unknown subset of streams, so that the number of affected streams and their location are unknown in advance. A good changepoint detection procedure should detect the change as soon as possible after its occurrence while controlling for a risk of false alarms. We consider a Bayesian setup with a given prior distribution of the change point and propose two sequential mixture-based change detection rules, one mixes a Shiryaev-type statistic over both the unknown subset of affected streams and the unknown post-change parameter and another mixes a Shiryaev–Roberts-type statistic. These rules generalize the mixture detection procedures studied by Tartakovsky (IEEE Trans Inf Theory 65(3):1413–1429, 2019) in a single-stream case. We provide sufficient conditions under which the proposed multistream change detection procedures are first-order asymptotically optimal with respect to moments of the delay to detection as the probability of false alarm approaches zero.

Suggested Citation

  • Alexander G. Tartakovsky, 2019. "Asymptotically Optimal Quickest Change Detection in Multistream Data—Part 1: General Stochastic Models," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1303-1336, December.
  • Handle: RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-019-09735-3
    DOI: 10.1007/s11009-019-09735-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09735-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09735-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Mei, 2010. "Efficient scalable schemes for monitoring a large number of data streams," Biometrika, Biometrika Trust, vol. 97(2), pages 419-433.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay Bartroff & Jinlin Song, 2016. "A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 3-19, March.
    2. Lu, Zexian & Chen, Yunxiao & Li, Xiaoou, 2022. "Optimal parallel sequential change detection under generalized performance measures," LSE Research Online Documents on Economics 118348, London School of Economics and Political Science, LSE Library.
    3. Chen, Yunxiao & Lee, Yi-Hsuan & Li, Xiaoou, 2022. "Item pool quality control in educational testing: change point model, compound risk, and sequential detection," LSE Research Online Documents on Economics 112498, London School of Economics and Political Science, LSE Library.
    4. Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
    5. Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
    6. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    7. Bertille Follain & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional changepoint estimation with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 1023-1055, July.
    8. Du, Lilun & Wen, Mengtao, 2023. "False discovery rate approach to dynamic change detection," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    9. Follain, Bertille & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional changepoint estimation with heterogeneous missingness," LSE Research Online Documents on Economics 115014, London School of Economics and Political Science, LSE Library.
    10. Yunxiao Chen & Yi-Hsuan Lee & Xiaoou Li, 2022. "Item Pool Quality Control in Educational Testing: Change Point Model, Compound Risk, and Sequential Detection," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 322-352, June.
    11. Hahn, Georg, 2022. "Online multivariate changepoint detection with type I error control and constant time/memory updates per series," Statistics & Probability Letters, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-019-09735-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.