IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v181y2022ics0167715221002200.html
   My bibliography  Save this article

Online multivariate changepoint detection with type I error control and constant time/memory updates per series

Author

Listed:
  • Hahn, Georg

Abstract

This article presents a simple algorithm for online multivariate changepoint detection of a mean in rare changepoint settings. The algorithm is based on a modified cusum statistic and guarantees control of the type I error on any false discoveries, while featuring O(1) time and O(1) memory updates per series as well as a proven detection delay.

Suggested Citation

  • Hahn, Georg, 2022. "Online multivariate changepoint detection with type I error control and constant time/memory updates per series," Statistics & Probability Letters, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:stapro:v:181:y:2022:i:c:s0167715221002200
    DOI: 10.1016/j.spl.2021.109258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221002200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehud Aharoni & Saharon Rosset, 2014. "Generalized α-investing: definitions, optimality results and application to public databases," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 771-794, September.
    2. Axel Gandy & Georg Hahn, 2014. "MMCTest—A Safe Algorithm for Implementing Multiple Monte Carlo Tests," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1083-1101, December.
    3. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    4. Dean P. Foster & Robert A. Stine, 2008. "α‐investing: a procedure for sequential control of expected false discoveries," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 429-444, April.
    5. Nancy R. Zhang & David O. Siegmund & Hanlee Ji & Jun Z. Li, 2010. "Detecting simultaneous changepoints in multiple sequences," Biometrika, Biometrika Trust, vol. 97(3), pages 631-645.
    6. Y. Mei, 2010. "Efficient scalable schemes for monitoring a large number of data streams," Biometrika, Biometrika Trust, vol. 97(2), pages 419-433.
    7. Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertille Follain & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional changepoint estimation with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 1023-1055, July.
    2. Follain, Bertille & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional changepoint estimation with heterogeneous missingness," LSE Research Online Documents on Economics 115014, London School of Economics and Political Science, LSE Library.
    3. Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
    4. Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
    5. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
    8. Tianming Xu & Yuesong Wei, 2023. "Ratio Test for Mean Changes in Time Series with Heavy-Tailed AR( p ) Noise Based on Multiple Sampling Methods," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    9. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    10. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.
    11. Jaromír Antoch & Jan Hanousek & Lajos Horváth & Marie Hušková & Shixuan Wang, 2019. "Structural breaks in panel data: Large number of panels and short length time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 828-855, August.
    12. Fabrizio Ghezzi & Eduardo Rossi & Lorenzo Trapani, 2024. "Fast Online Changepoint Detection," Papers 2402.04433, arXiv.org.
    13. Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
    14. Ricardo C. Pedroso & Rosangela H. Loschi & Fernando Andrés Quintana, 2023. "Multipartition model for multiple change point identification," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 759-783, June.
    15. Gong, Siliang & Zhang, Kai & Liu, Yufeng, 2018. "Efficient test-based variable selection for high-dimensional linear models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 17-31.
    16. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    17. Federico A. Bugni & Jia Li & Qiyuan Li, 2023. "Permutation‐based tests for discontinuities in event studies," Quantitative Economics, Econometric Society, vol. 14(1), pages 37-70, January.
    18. Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.
    19. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    20. Sergio Alvarez-Andrade & Salim Bouzebda & Aimé Lachal, 2018. "Strong approximations for the p-fold integrated empirical process with applications to statistical tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 826-849, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:181:y:2022:i:c:s0167715221002200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.