IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v198y2023ics0047259x23000702.html
   My bibliography  Save this article

False discovery rate approach to dynamic change detection

Author

Listed:
  • Du, Lilun
  • Wen, Mengtao

Abstract

In multiple data stream surveillance, the rapid and sequential identification of individuals whose behavior deviates from the norm has become particularly important. In such applications, the state of a stream can alternate, possibly multiple times, between a null state and an alternative state. To balance the ability to detect two types of changes, that is, a change from the null to the alternative and back to the null, we propose a new multiple testing procedure based on a penalized version of the generalized likelihood ratio test statistics for change detection. The false discovery rate (FDR) at each time point is shown to be controlled under some mild conditions on the dependence structure of data streams. A data-driven approach is developed for selection of the penalization parameter. Its advantage is demonstrated via simulation and a data example.

Suggested Citation

  • Du, Lilun & Wen, Mengtao, 2023. "False discovery rate approach to dynamic change detection," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:jmvana:v:198:y:2023:i:c:s0047259x23000702
    DOI: 10.1016/j.jmva.2023.105224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert Vexler & Chengqing Wu, 2009. "An Optimal Retrospective Change Point Detection Policy," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 542-558, September.
    2. O. A. Grigg & D. J. Spiegelhalter & H. E. Jones, 2009. "Local and marginal control charts applied to methicillin resistant Staphylococcus aureus bacteraemia reports in UK acute National Health Service trusts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 49-66, January.
    3. David McDonald, 1990. "A cusum procedure based on sequential ranks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(5), pages 627-646, October.
    4. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    5. Lilun Du & Xu Guo & Wenguang Sun & Changliang Zou, 2023. "False Discovery Rate Control Under General Dependence By Symmetrized Data Aggregation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 607-621, January.
    6. Y. Mei, 2010. "Efficient scalable schemes for monitoring a large number of data streams," Biometrika, Biometrika Trust, vol. 97(2), pages 419-433.
    7. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    8. David Spiegelhalter & Christopher Sherlaw‐Johnson & Martin Bardsley & Ian Blunt & Christopher Wood & Olivia Grigg, 2012. "Statistical methods for healthcare regulation: rating, screening and surveillance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 1-47, January.
    9. Axel Gandy & F. Din-Houn Lau, 2013. "Non-restarting cumulative sum charts and control of the false discovery rate," Biometrika, Biometrika Trust, vol. 100(1), pages 261-268.
    10. Christopher Genovese & Larry Wasserman, 2002. "Operating characteristics and extensions of the false discovery rate procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 499-517, August.
    11. Haojie Ren & Changliang Zou & Nan Chen & Runze Li, 2022. "Large-Scale Datastreams Surveillance via Pattern-Oriented-Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 794-808, April.
    12. Clare Marshall & Nicky Best & Alex Bottle & Paul Aylin, 2004. "Statistical issues in the prospective monitoring of health outcomes across multiple units," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 541-559, August.
    13. Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Habiger & David Watts & Michael Anderson, 2017. "Multiple testing with heterogeneous multinomial distributions," Biometrics, The International Biometric Society, vol. 73(2), pages 562-570, June.
    2. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    3. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    4. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    5. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    6. Gómez-Villegas Miguel A. & Salazar Isabel & Sanz Luis, 2014. "A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 49-65, February.
    7. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    8. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    9. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    10. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    11. Zhigen Zhao, 2022. "Where to find needles in a haystack?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 148-174, March.
    12. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    13. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    14. Willem Albers, 2011. "Control charts for health care monitoring under overdispersion," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(1), pages 67-83, July.
    15. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    16. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    17. Zehetmayer Sonja & Graf Alexandra C. & Posch Martin, 2015. "Sample size reassessment for a two-stage design controlling the false discovery rate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 429-442, November.
    18. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.
    19. Debashis Ghosh & Wei Chen & Trivellore Raghuanthan, 2004. "The false discovery rate: a variable selection perspective," The University of Michigan Department of Biostatistics Working Paper Series 1040, Berkeley Electronic Press.
    20. Habiger, Joshua D. & Adekpedjou, Akim, 2014. "Optimal rejection curves for exact false discovery rate control," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 21-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:198:y:2023:i:c:s0047259x23000702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.