Optimal parallel sequential change detection under generalized performance measures
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Savas Dayanik & Christian Goulding & H. Vincent Poor, 2008. "Bayesian Sequential Change Diagnosis," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 475-496, May.
- Jay Bartroff & Matthew Finkelman & Tze Lai, 2008. "Modern Sequential Analysis and Its Applications to Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 473-486, September.
- Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
- Y. Mei, 2010. "Efficient scalable schemes for monitoring a large number of data streams," Biometrika, Biometrika Trust, vol. 97(2), pages 419-433.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Yunxiao & Lee, Yi-Hsuan & Li, Xiaoou, 2022. "Item pool quality control in educational testing: change point model, compound risk, and sequential detection," LSE Research Online Documents on Economics 112498, London School of Economics and Political Science, LSE Library.
- Yunxiao Chen & Yi-Hsuan Lee & Xiaoou Li, 2022. "Item Pool Quality Control in Educational Testing: Change Point Model, Compound Risk, and Sequential Detection," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 322-352, June.
- Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
- Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
- Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
- van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
- Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
- Victor F. Araman & René A. Caldentey, 2022. "Diffusion Approximations for a Class of Sequential Experimentation Problems," Management Science, INFORMS, vol. 68(8), pages 5958-5979, August.
- Han, Bing & Dalal, Siddhartha R., 2012. "A Bernstein-type estimator for decreasing density with application to p-value adjustments," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 427-437.
- Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
- Kline, Patrick & Walters, Christopher, 2019.
"Audits as Evidence: Experiments, Ensembles, and Enforcement,"
Institute for Research on Labor and Employment, Working Paper Series
qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
- Patrick Kline & Christopher Walters, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Papers 1907.06622, arXiv.org, revised Jul 2019.
- He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
- Jay Bartroff & Jinlin Song, 2016. "A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 3-19, March.
- Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
- Savas Dayanik & Warren Powell & Kazutoshi Yamazaki, 2013. "Asymptotically optimal Bayesian sequential change detection and identification rules," Annals of Operations Research, Springer, vol. 208(1), pages 337-370, September.
- Cheng, Cheng, 2009. "Internal validation inferences of significant genomic features in genome-wide screening," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 788-800, January.
- Sinjini Sikdar & Somnath Datta & Susmita Datta, 2017. "EAMA: Empirically adjusted meta-analysis for large-scale simultaneous hypothesis testing in genomic experiments," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.
- Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
- Tianwei Yu, 2018. "A new dynamic correlation algorithm reveals novel functional aspects in single cell and bulk RNA-seq data," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-22, August.
More about this item
Keywords
large-scale inference; multiple change detection; sequential analysis; multiple hypothesis testing;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-05-20 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:118348. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.