IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i4d10.1007_s11009-015-9445-8.html
   My bibliography  Save this article

Bayesian Threshold Regression Model with Random Effects for Recurrent Events

Author

Listed:
  • P. Economou

    (University of Patras)

  • S. Malefaki

    (University of Patras)

  • C. Caroni

    (National Technical University of Athens)

Abstract

It is of practical importance to extend time-to-event models in order to be applicable in situations with recurrent events on the same individual or machine. The model proposed here extends in this direction a threshold regression model with random individual effects, in which event times are modeled as realizations of the first hitting times of an underlying Wiener process, leading to Inverse Gaussian distributions of times between events. In our approach, the parameters of the distribution of an event time may depend on features of the process (such as number of previous events and total elapsed time) as well as on measured, possibly time varying, covariates and the individuals’ random effects. A Bayesian approach is adopted for model estimation using an improved MCMC algorithm, which guarantees a proper choice of proposal distribution at any step of the hybrid Gibbs sampler when this is required. Model fitting is investigated using simulated data and the model is applied to a set of real data on drug users who made repeated contacts with treatment services.

Suggested Citation

  • P. Economou & S. Malefaki & C. Caroni, 2015. "Bayesian Threshold Regression Model with Random Effects for Recurrent Events," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 871-898, December.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:4:d:10.1007_s11009-015-9445-8
    DOI: 10.1007/s11009-015-9445-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-015-9445-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-015-9445-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Liming & Yau, Kelvin K.W. & Tse, S.K. & Lee, Andy H., 2007. "Influence diagnostics for random effect survival models: Application to a recurrent infection study for kidney patients on portable dialysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5977-5993, August.
    2. William Griffiths, 2002. "A Gibbs’ Sampler for the Parameters of a Truncated Multivariate Normal Distribution," Department of Economics - Working Papers Series 856, The University of Melbourne.
    3. Abrahantes, Jose Cortinas & Legrand, Catherine & Burzykowski, Tomasz & Janssen, Paul & Ducrocq, Vincent & Duchateau, Luc, 2007. "Comparison of different estimation procedures for proportional hazards model with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3913-3930, May.
    4. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan A. Race & Michael L. Pennell, 2021. "Semi-parametric survival analysis via Dirichlet process mixtures of the First Hitting Time model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 177-194, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    2. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    3. Veiga, Sébastien Da & Marrel, Amandine, 2020. "Gaussian process regression with linear inequality constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
    5. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    6. Badía, F.G. & Sangüesa, C. & Cha, J.H., 2014. "Stochastic comparison of multivariate conditionally dependent mixtures," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 82-94.
    7. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    8. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    9. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    10. Cruz Lopez, Jorge A. & Harris, Jeffrey H. & Hurlin, Christophe & Pérignon, Christophe, 2017. "CoMargin," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 2183-2215, October.
      • Jorge A. Cruz Lopez & Jeffrey H. Harris & Christophe Hurlin & Christophe Pérignon, 2015. "CoMargin," Working Papers halshs-00979440, HAL.
      • Jorge Cruz Lopez & Jeffrey Harris & Christophe Hurlin & Christophe Pérignon, 2017. "CoMargin," Post-Print hal-03579309, HAL.
    11. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    12. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    13. Yun Zhao & Andy Lee & Kelvin Yau & Geoffrey McLachlan, 2011. "Assessing the adequacy of Weibull survival models: a simulated envelope approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2089-2097.
    14. Lai, Xin & Yau, Kelvin K.W., 2010. "Extending the long-term survivor mixture model with random effects for clustered survival data," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2103-2112, September.
    15. Jamie Crandell & Corrine Voils & YunKyung Chang & Margarete Sandelowski, 2011. "Bayesian data augmentation methods for the synthesis of qualitative and quantitative research findings," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 653-669, April.
    16. Camba-Méndez, Gonzalo & Rodriguez-Palenzuela, Diego & Carbó-Valverde, Santiago, 2014. "Financial reputation, market interventions and debt issuance by banks: a truncated two-part model approach," Working Paper Series 1741, European Central Bank.
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021. "Forecasting with Shadow-Rate VARs," Working Papers 21-09, Federal Reserve Bank of Cleveland.
    18. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    19. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    20. Lin, Tsung-I & Wang, Wan-Lun, 2024. "On moments of truncated multivariate normal/independent distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:4:d:10.1007_s11009-015-9445-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.