IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i12p5977-5993.html
   My bibliography  Save this article

Influence diagnostics for random effect survival models: Application to a recurrent infection study for kidney patients on portable dialysis

Author

Listed:
  • Xiang, Liming
  • Yau, Kelvin K.W.
  • Tse, S.K.
  • Lee, Andy H.

Abstract

No abstract is available for this item.

Suggested Citation

  • Xiang, Liming & Yau, Kelvin K.W. & Tse, S.K. & Lee, Andy H., 2007. "Influence diagnostics for random effect survival models: Application to a recurrent infection study for kidney patients on portable dialysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5977-5993, August.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5977-5993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00461-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen Hsiang Wei & Michael R. Kosorok, 2000. "Masking Unmasked in the Proportional Hazards Model," Biometrics, The International Biometric Society, vol. 56(4), pages 991-995, December.
    2. Yau, Kelvin K. W. & McGilchrist, C. A., 1999. "Power family of transformation for Cox's regression with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 57-66, March.
    3. Xiang, Liming & Tse, Siu-Keung & Lee, Andy H., 2002. "Influence diagnostics for generalized linear mixed models: applications to clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 759-774, October.
    4. Larry F. León & Chih-Ling Tsai, 2004. "Functional Form Diagnostics for Cox's Proportional Hazards Model," Biometrics, The International Biometric Society, vol. 60(1), pages 75-84, March.
    5. Kelvin K. W. Yau, 2001. "Multilevel Models for Survival Analysis with Random Effects," Biometrics, The International Biometric Society, vol. 57(1), pages 96-102, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun Zhao & Andy Lee & Kelvin Yau & Geoffrey McLachlan, 2011. "Assessing the adequacy of Weibull survival models: a simulated envelope approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2089-2097.
    2. Lai, Xin & Yau, Kelvin K.W., 2010. "Extending the long-term survivor mixture model with random effects for clustered survival data," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2103-2112, September.
    3. P. Economou & S. Malefaki & C. Caroni, 2015. "Bayesian Threshold Regression Model with Random Effects for Recurrent Events," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 871-898, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinho, Luis Gustavo B. & Nobre, Juvêncio S. & Singer, Julio M., 2015. "Cook’s distance for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 126-136.
    2. Julio M. Singer & Francisco M.M. Rocha & Juvêncio S. Nobre, 2017. "Graphical Tools for Detecting Departures from Linear Mixed Model Assumptions and Some Remedial Measures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 290-324, August.
    3. Abrahantes, Jose Cortinas & Molenberghs, Geert & Burzykowski, Tomasz & Shkedy, Ziv & Abad, Ariel Alonso & Renard, Didier, 2004. "Choice of units of analysis and modeling strategies in multilevel hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 537-563, October.
    4. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    5. Sharif Mahmood & Begum Zainab & A.H.M. Mahbub Latif, 2013. "Frailty modeling for clustered survival data: an application to birth interval in Bangladesh," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2670-2680, December.
    6. Guillaume Horny & Dragana Djurdjevic & Bernhard Boockmann & François Laisney, 2008. "Bayesian Estimation of Cox Models with Non-nested Random Effects: an Application to the Ratification Of ILO Conventions by Developing Countries," Annals of Economics and Statistics, GENES, issue 89, pages 193-214.
    7. Guillaume Horny, 2009. "Inference in mixed proportional hazard models with K random effects," Statistical Papers, Springer, vol. 50(3), pages 481-499, June.
    8. Eric C. Brown & John W. Graham & J. David Hawkins & Michael W. Arthur & Megan M. Baldwin & Sabrina Oesterle & John S. Briney & Richard F. Catalano & Robert D. Abbott, 2009. "Design and Analysis of the Community Youth Development Study Longitudinal Cohort Sample," Evaluation Review, , vol. 33(4), pages 311-334, August.
    9. repec:jss:jstsof:08:i09 is not listed on IDEAS
    10. Li, Zaixing & Xu, Wangli & Zhu, Lixing, 2009. "Influence diagnostics and outlier tests for varying coefficient mixed models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2002-2017, October.
    11. Guillaume Horny, 2006. "Partial Likelihood Estimation of a Cox Model with Random Effects: an EM Algorithm based on Penalized Likelihood," Working Papers of BETA 2006-10, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    12. Manor, Orly & Zucker, D.M.David M., 2004. "Small sample inference for the fixed effects in the mixed linear model," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 801-817, July.
    13. Xu, Liang & Lee, Sik-Yum & Poon, Wai-Yin, 2006. "Deletion measures for generalized linear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1131-1146, November.
    14. B. Ganguli & M. Naskar & E.J. Malloy & E.A. Eisen, 2015. "Determination of the functional form of the relationship of covariates to the log hazard ratio in a Cox model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1091-1105, May.
    15. Kelvin Yau & Karen Yip & H. K. Yuen, 2003. "Modelling repeated insurance claim frequency data using the generalized linear mixed model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(8), pages 857-865.
    16. James W. Vaupel & Trifon Missov, 2014. "Unobserved population heterogeneity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(22), pages 659-686.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5977-5993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.