IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i9p2103-2112.html
   My bibliography  Save this article

Extending the long-term survivor mixture model with random effects for clustered survival data

Author

Listed:
  • Lai, Xin
  • Yau, Kelvin K.W.

Abstract

To provide a class of hazard functions in analyzing survival data, the power family of transformations has been proposed in the literature. Our work in this paper considers the existence of cured patients and random effects due to clustering of survival data in a long-term survivor model setting. A power family of transformations is assumed for the relative risk in the hazard function component. Such an extension allows us to flexibly base the inferences on various hazard function assumptions, particularly taking exponential and linear relative risk as two special cases. The parameter governing the power transformation could be determined by means of a modified Akaike information criterion (AIC). Applications to two sets of survival data illustrate the use of the proposed long-term survivor mixture model. A simulation study is carried out to examine the performance of the estimators under the proposed numerical estimation scheme.

Suggested Citation

  • Lai, Xin & Yau, Kelvin K.W., 2010. "Extending the long-term survivor mixture model with random effects for clustered survival data," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2103-2112, September.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:9:p:2103-2112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00119-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    2. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    3. Zeng, Donglin & Yin, Guosheng & Ibrahim, Joseph G., 2005. "Inference for a Class of Transformed Hazards Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1000-1008, September.
    4. Peng, Yingwei, 2003. "Estimating baseline distribution in proportional hazards cure models," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 187-201, February.
    5. Xiang, Liming & Yau, Kelvin K.W. & Tse, S.K. & Lee, Andy H., 2007. "Influence diagnostics for random effect survival models: Application to a recurrent infection study for kidney patients on portable dialysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5977-5993, August.
    6. Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Xin & Yau, Kelvin K.W. & Liu, Liu, 2017. "Competing risk model with bivariate random effects for clustered survival data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 215-223.
    2. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    3. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    4. Frederico M. Almeida & Vinícius D. Mayrink & Enrico A. Colosimo, 2023. "Bayesian solution to the monotone likelihood in the standard mixture cure model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 365-390, August.
    5. Mioara Alina Nicolaie & Jeremy M. G. Taylor & Catherine Legrand, 2019. "Vertical modeling: analysis of competing risks data with a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 1-25, January.
    6. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    7. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    8. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    9. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    10. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    11. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    12. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    13. Mengling Liu & Wenbin Lu & Yongzhao Shao, 2006. "Interval Mapping of Quantitative Trait Loci for Time-to-Event Data with the Proportional Hazards Mixture Cure Model," Biometrics, The International Biometric Society, vol. 62(4), pages 1053-1061, December.
    14. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    15. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    16. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    17. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    18. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    19. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    20. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:9:p:2103-2112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.