IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i4p66-1129d969141.html
   My bibliography  Save this article

Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data

Author

Listed:
  • Sudaraka Tholkage

    (Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY 40202, USA)

  • Qi Zheng

    (Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY 40202, USA)

  • Karunarathna B. Kulasekera

    (Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY 40202, USA)

Abstract

Due to the wide availability of functional data from multiple disciplines, the studies of functional data analysis have become popular in the recent literature. However, the related development in censored survival data has been relatively sparse. In this work, we consider the problem of analyzing time-to-event data in the presence of functional predictors. We develop a conditional generalized Kaplan–Meier (KM) estimator that incorporates functional predictors using kernel weights and rigorously establishes its asymptotic properties. In addition, we propose to select the optimal bandwidth based on a time-dependent Brier score. We then carry out extensive numerical studies to examine the finite sample performance of the proposed functional KM estimator and bandwidth selector. We also illustrated the practical usage of our proposed method by using a data set from Alzheimer’s Disease Neuroimaging Initiative data.

Suggested Citation

  • Sudaraka Tholkage & Qi Zheng & Karunarathna B. Kulasekera, 2022. "Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data," Stats, MDPI, vol. 5(4), pages 1-17, November.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:4:p:66-1129:d:969141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/4/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/4/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    2. Shujie Ma, 2016. "Estimation and inference in functional single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 181-208, February.
    3. Cardot, Hervé & Sarda, Pacal, 2005. "Estimation in generalized linear models for functional data via penalized likelihood," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 24-41, January.
    4. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    5. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    6. Hans-Georg Müller & Ying Zhang, 2005. "Time-Varying Functional Regression for Predicting Remaining Lifetime Distributions from Longitudinal Trajectories," Biometrics, The International Biometric Society, vol. 61(4), pages 1064-1075, December.
    7. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    8. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    9. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    10. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    11. Salim Bouzebda & Boutheina Nemouchi, 2020. "Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(2), pages 452-509, April.
    12. Kyle Hasenstab & Aaron Scheffler & Donatello Telesca & Catherine A. Sugar & Shafali Jeste & Charlotte DiStefano & Damla Şentürk, 2017. "A multi-dimensional functional principal components analysis of EEG data," Biometrics, The International Biometric Society, vol. 73(3), pages 999-1009, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    2. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    3. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    4. Escabias, M. & Aguilera, A.M. & Valderrama, M.J., 2007. "Functional PLS logit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4891-4902, June.
    5. Ahmedou, Aziza & Marion, Jean-Marie & Pumo, Besnik, 2016. "Generalized linear model with functional predictors and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 313-324.
    6. Tian, Tian Siva & James, Gareth M., 2013. "Interpretable dimension reduction for classifying functional data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 282-296.
    7. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    8. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    9. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    10. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    11. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Ying Cui & Limin Peng, 2022. "Assessing dynamic covariate effects with survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 675-699, October.
    13. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    14. Baíllo, Amparo & Grané, Aurea, 2007. "Local linear regression for functional predictor and scalar response," DES - Working Papers. Statistics and Econometrics. WS ws076115, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Lili Xia & Tingyu Lai & Zhongzhan Zhang, 2023. "An Adaptive-to-Model Test for Parametric Functional Single-Index Model," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    16. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    17. Gabriela M. Rodrigues & Edwin M. M. Ortega & Gauss M. Cordeiro & Roberto Vila, 2023. "Quantile Regression with a New Exponentiated Odd Log-Logistic Weibull Distribution," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    18. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    19. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    20. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:4:p:66-1129:d:969141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.