IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v86y2003i2p293-309.html
   My bibliography  Save this article

Constructing fixed rank optimal estimators with method of best recurrent approximations

Author

Listed:
  • Torokhti, Anatoli
  • Howlett, Phil

Abstract

We propose a new approach which generalizes and improves principal component analysis (PCA) and its recent advances. The approach is based on the following underlying ideas. PCA can be reformulated as a technique which provides the best linear estimator of the fixed rank for random vectors. By the proposed method, the vector estimate is presented in a special quadratic form aimed to improve the error of estimation compared with customary linear estimates. The vector is first pre-estimated from the special iterative procedure such that each iterative loop consists of a solution of the unconstrained nonlinear best approximation problem. Then, the final vector estimate is obtained from a solution of the constrained best approximation problem with the quadratic approximant. We show that the combination of these techniques allows us to provide a new nonlinear estimator with a significantly better performance compared with that of PCA and its known modifications.

Suggested Citation

  • Torokhti, Anatoli & Howlett, Phil, 2003. "Constructing fixed rank optimal estimators with method of best recurrent approximations," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 293-309, August.
  • Handle: RePEc:eee:jmvana:v:86:y:2003:i:2:p:293-309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00024-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ocaña, F. A. & Aguilera, A. M. & Valderrama, M. J., 1999. "Functional Principal Components Analysis by Choice of Norm," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 262-276, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Howlett, P.G. & Torokhti, A. & Pearce, C.E.M., 2007. "Optimal multilinear estimation of a random vector under constraints of causality and limited memory," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 869-878, October.
    2. Torokhti, Anatoli & Friedland, Shmuel, 2009. "Towards theory of generic Principal Component Analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 661-669, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    2. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    3. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    4. Paula R. Bouzas & Ana M. Aguilera & Nuria Ruiz-Fuentes, 2012. "Functional Estimation of the Random Rate of a Cox Process," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 57-69, March.
    5. Marc Vidal & Mattia Rosso & Ana M. Aguilera, 2021. "Bi-Smoothed Functional Independent Component Analysis for EEG Artifact Removal," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    6. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    7. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
    8. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Torokhti, Anatoli & Friedland, Shmuel, 2009. "Towards theory of generic Principal Component Analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 661-669, April.
    10. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Ana Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    12. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    13. Michio Yamamoto & Heungsun Hwang, 2017. "Dimension-Reduced Clustering of Functional Data via Subspace Separation," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 294-326, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:86:y:2003:i:2:p:293-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.