IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v13y2011i4d10.1007_s11009-010-9196-5.html
   My bibliography  Save this article

Stability of Partially Implicit Langevin Schemes and Their MCMC Variants

Author

Listed:
  • Bruno Casella

    (McKinsey & Company)

  • Gareth Roberts

    (University of Warwick)

  • Osnat Stramer

    (University of Iowa)

Abstract

A broad class of implicit or partially implicit time discretizations for the Langevin diffusion are considered and used as proposals for the Metropolis–Hastings algorithm. Ergodic properties of our proposed schemes are studied. We show that introducing implicitness in the discretization leads to a process that often inherits the convergence rate of the continuous time process. These contrast with the behavior of the naive or Euler–Maruyama discretization, which can behave badly even in simple cases. We also show that our proposed chains, when used as proposals for the Metropolis–Hastings algorithm, preserve geometric ergodicity of their implicit Langevin schemes and thus behave better than the local linearization of the Langevin diffusion. We illustrate the behavior of our proposed schemes with examples. Our results are described in detail in one dimension only, although extensions to higher dimensions are also described and illustrated.

Suggested Citation

  • Bruno Casella & Gareth Roberts & Osnat Stramer, 2011. "Stability of Partially Implicit Langevin Schemes and Their MCMC Variants," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 835-854, December.
  • Handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9196-5
    DOI: 10.1007/s11009-010-9196-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-010-9196-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-010-9196-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    2. O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 307-328, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casella, Bruno & Roberts, Gareth O. & Stramer, Osnat, 2011. "Stability of Partially Implicit Langevin Schemes and Their MCMC Variants," MPRA Paper 95220, University Library of Munich, Germany.
    2. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    3. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    4. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    5. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    6. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    7. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    8. G. O. Roberts & O. Stramer, 2002. "Langevin Diffusions and Metropolis-Hastings Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 4(4), pages 337-357, December.
    9. O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 283-306, October.
    10. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    11. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    12. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    13. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    14. Birrell, Jeremiah & Herzog, David P. & Wehr, Jan, 2012. "The transition from ergodic to explosive behavior in a family of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1519-1539.
    15. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    16. Qiu Lin & Ruisheng Qi, 2023. "Optimal Weak Order and Approximation of the Invariant Measure with a Fully-Discrete Euler Scheme for Semilinear Stochastic Parabolic Equations with Additive Noise," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    17. Ganguly, Arnab & Sundar, P., 2021. "Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 74-110.
    18. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    19. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.
    20. Mattingly, Jonathan C. & McKinley, Scott A. & Pillai, Natesh S., 2012. "Geometric ergodicity of a bead–spring pair with stochastic Stokes forcing," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3953-3979.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9196-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.