IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v458y2023ics0096300323003934.html
   My bibliography  Save this article

Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence

Author

Listed:
  • Gao, Shuaibin
  • Li, Xiaotong
  • Liu, Zhuoqi

Abstract

This paper focuses on the stationary distribution of the Milstein scheme for stochastic differential delay equations. The numerical segment process is constructed, which is proved to be a time homogeneous Markov process. We show that this numerical segment process admits a unique numerical stationary distribution. Then we reveal that the distribution of numerical segment process converges exponentially to the underlying one in the Wasserstein metric. Moreover, the first-order convergence of numerical stationary distribution to exact stationary distribution is presented. Finally, abundant numerical experiments confirm the reliability of theoretical findings.

Suggested Citation

  • Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
  • Handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323003934
    DOI: 10.1016/j.amc.2023.128224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323003934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mei, Hongwei & Yin, George, 2015. "Convergence and convergence rates for approximating ergodic means of functions of solutions to stochastic differential equations with Markov switching," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3104-3125.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    3. Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    5. Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
    6. Weng, Lihui & Liu, Wei, 2019. "Invariant measures of the Milstein method for stochastic differential equations with commutative noise," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 169-176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    2. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    3. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    4. Cao, Wenping & Zhu, Quanxin, 2022. "Stability of stochastic nonlinear delay systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    5. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    6. Cao, Nan & Fu, Xianlong, 2023. "Stationary distribution and extinction of a Lotka–Volterra model with distribute delay and nonlinear stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Zhao, Yu & Yuan, Sanling, 2016. "Stability in distribution of a stochastic hybrid competitive Lotka–Volterra model with Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 98-109.
    8. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    9. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    10. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    11. Khieu, Hoang & Wälde, Klaus, 2023. "Capital income risk and the dynamics of the wealth distribution," Economic Modelling, Elsevier, vol. 122(C).
    12. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    13. Liu, Jiamin & Li, Zhao-Yan & Deng, Feiqi, 2021. "Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    14. Kim, Sangkwon & Park, Jintae & Lee, Chaeyoung & Jeong, Darae & Choi, Yongho & Kwak, Soobin & Kim, Junseok, 2020. "Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Pimentel, Carlos Eduardo Hirth & Rodriguez, Pablo M. & Valencia, Leon A., 2020. "A note on a stage-specific predator–prey stochastic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    16. Pagès Gilles & Rey Clément, 2019. "Recursive computation of the invariant distributions of Feller processes: Revisited examples and new applications," Monte Carlo Methods and Applications, De Gruyter, vol. 25(1), pages 1-36, March.
    17. Leonardo Videla & Rolando Rebolledo, 2022. "Evolving Systems of Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1662-1705, September.
    18. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    19. Xiaomei Feng & Yuan Miao & Shulin Sun & Lei Wang, 2022. "Dynamic Behaviors of a Stochastic Eco-Epidemiological Model for Viral Infection in the Toxin-Producing Phytoplankton and Zooplankton System," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    20. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323003934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.