IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v458y2023ics0096300323003934.html
   My bibliography  Save this article

Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence

Author

Listed:
  • Gao, Shuaibin
  • Li, Xiaotong
  • Liu, Zhuoqi

Abstract

This paper focuses on the stationary distribution of the Milstein scheme for stochastic differential delay equations. The numerical segment process is constructed, which is proved to be a time homogeneous Markov process. We show that this numerical segment process admits a unique numerical stationary distribution. Then we reveal that the distribution of numerical segment process converges exponentially to the underlying one in the Wasserstein metric. Moreover, the first-order convergence of numerical stationary distribution to exact stationary distribution is presented. Finally, abundant numerical experiments confirm the reliability of theoretical findings.

Suggested Citation

  • Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
  • Handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323003934
    DOI: 10.1016/j.amc.2023.128224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323003934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    2. Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
    4. Weng, Lihui & Liu, Wei, 2019. "Invariant measures of the Milstein method for stochastic differential equations with commutative noise," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 169-176.
    5. Mei, Hongwei & Yin, George, 2015. "Convergence and convergence rates for approximating ergodic means of functions of solutions to stochastic differential equations with Markov switching," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3104-3125.
    6. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    2. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    3. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    4. Khieu, Hoang & Wälde, Klaus, 2023. "Capital income risk and the dynamics of the wealth distribution," Economic Modelling, Elsevier, vol. 122(C).
    5. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    6. Kim, Sangkwon & Park, Jintae & Lee, Chaeyoung & Jeong, Darae & Choi, Yongho & Kwak, Soobin & Kim, Junseok, 2020. "Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    8. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    9. Wälde, Klaus & Bayer, Christian, 2011. "Describing the Dynamics of Distribution in Search and Matching Models by Fokker-Planck Equations," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48736, Verein für Socialpolitik / German Economic Association.
    10. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    12. Gilles Pagès & Clément Rey, 2023. "Discretization of the Ergodic Functional Central Limit Theorem," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-44, March.
    13. Qiu Lin & Ruisheng Qi, 2023. "Optimal Weak Order and Approximation of the Invariant Measure with a Fully-Discrete Euler Scheme for Semilinear Stochastic Parabolic Equations with Additive Noise," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    14. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    15. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.
    16. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    17. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    18. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
    19. Casella, Bruno & Roberts, Gareth O. & Stramer, Osnat, 2011. "Stability of Partially Implicit Langevin Schemes and Their MCMC Variants," MPRA Paper 95220, University Library of Munich, Germany.
    20. Janejira Tranthi & Thongchai Botmart & Wajaree Weera & Piyapong Niamsup, 2019. "A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays," Mathematics, MDPI, vol. 7(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323003934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.