Langevin Diffusions and Metropolis-Hastings Algorithms
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1023562417138
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 283-306, October.
- Ganidis, H. & Roynette, B. & Simonot, F., 1999. "Convergence rate of some semi-groups to their invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 79(2), pages 243-263, February.
- O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 307-328, October.
- Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruben Loaiza-Maya & Didier Nibbering & Dan Zhu, 2023. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Papers 2306.14445, arXiv.org.
- Gunawan, David & Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc, 2019. "Subsampling Sequential Monte Carlo for Static Bayesian Models," Working Paper Series 371, Sveriges Riksbank (Central Bank of Sweden).
- Robert D. Skeel & Carsten Hartmann, 2021. "Choice of damping coefficient in Langevin dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(9), pages 1-13, September.
- Dalalyan, Arnak S. & Karagulyan, Avetik, 2019.
"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient,"
Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
- Arnak Dalalyan & Avetik Karagulyan, 2017. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Working Papers 2017-20, Center for Research in Economics and Statistics.
- Radu Herbei & Rajib Paul & L Mark Berliner, 2017. "Applying diffusion-based Markov chain Monte Carlo," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
- Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
- Bédard, Mylène, 2017. "Hierarchical models: Local proposal variances for RWM-within-Gibbs and MALA-within-Gibbs," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 231-246.
- Kengo Kamatani, 2009. "Metropolis–Hastings Algorithms with acceptance ratios of nearly 1," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 949-967, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dalalyan, Arnak S. & Karagulyan, Avetik, 2019.
"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient,"
Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
- Arnak Dalalyan & Avetik Karagulyan, 2017. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Working Papers 2017-20, Center for Research in Economics and Statistics.
- Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
- O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
- Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
- Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
- Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
- Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
- Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
- Alexander Veretennikov, 2023. "Polynomial Recurrence for SDEs with a Gradient-Type Drift, Revisited," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
- Arnak S. Dalalyan, 2017.
"Theoretical guarantees for approximate sampling from smooth and log-concave densities,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
- Arnak S. Dalalyan, 2014. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Working Papers 2014-45, Center for Research in Economics and Statistics.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017.
"Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," LSE Research Online Documents on Economics 80749, London School of Economics and Political Science, LSE Library.
- Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
- O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 283-306, October.
- Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
- Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
- Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
- Fort, Gersende & Moulines, Eric, 2000. "V-Subgeometric ergodicity for a Hastings-Metropolis algorithm," Statistics & Probability Letters, Elsevier, vol. 49(4), pages 401-410, October.
- Burda Martin & Maheu John M., 2013.
"Bayesian adaptively updated Hamiltonian Monte Carlo with an application to high-dimensional BEKK GARCH models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 345-372, September.
- Martin Burda & John M. Maheu, 2012. "Bayesian Adaptively Updated Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models," Working Paper series 46_12, Rimini Centre for Economic Analysis.
- Vandecasteele, Hannes & Samaey, Giovanni, 2024. "Computational efficiency study of a micro-macro Markov chain Monte Carlo method for molecular dynamics," Applied Mathematics and Computation, Elsevier, vol. 474(C).
More about this item
Keywords
MCMC; Langevin diffusions and algorithms;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:4:y:2002:i:4:d:10.1023_a:1023562417138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.