IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v133y2021icp74-110.html
   My bibliography  Save this article

Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics

Author

Listed:
  • Ganguly, Arnab
  • Sundar, P.

Abstract

The paper studies asymptotics of inhomogeneous integral functionals of an ergodic diffusion process under the effect of discretization. Convergence to the corresponding functionals of the invariant distribution is shown for suitably chosen discretization steps, and the fluctuations are analyzed through central limit theorem and moderate deviation principle. The results will be particularly useful for understanding accuracy of an Euler discretization based numerical scheme for approximating functionals of invariant distribution of an ergodic diffusion. This is an infinite-time horizon problem, and the accuracy of numerical schemes in this context are comparatively much less studied than the ones used for generating approximate trajectories of diffusions over finite time intervals. The potential applications of these results also extend to other areas including mathematical physics, parameter inference of ergodic diffusions and analysis of multiscale dynamical systems with averaging.

Suggested Citation

  • Ganguly, Arnab & Sundar, P., 2021. "Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 74-110.
  • Handle: RePEc:eee:spapps:v:133:y:2021:i:c:p:74-110
    DOI: 10.1016/j.spa.2020.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920304075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Pagès, Gilles & Panloup, Fabien, 2014. "A mixed-step algorithm for the approximation of the stationary regime of a diffusion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 522-565.
    3. Guillin, Arnaud, 2001. "Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 287-313, April.
    4. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    2. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    3. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    4. I. A. Lubashevsky & R. Mahnke & M. Hajimahmoodzadeh & A. Katsnelson, 2005. "Long-lived states of oscillator chains with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 63-70, March.
    5. Konakov Valentin & Mammen Enno, 2002. "Edgeworth type expansions for Euler schemes for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 8(3), pages 271-286, December.
    6. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    7. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    8. Kawar Badie Mahmood & Adil Sufian Husain, 2021. "Bernoulli’s Number One Solution for Stochastic Equilibrium," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 194-201.
    9. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    10. Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.
    11. Qiu Lin & Ruisheng Qi, 2023. "Optimal Weak Order and Approximation of the Invariant Measure with a Fully-Discrete Euler Scheme for Semilinear Stochastic Parabolic Equations with Additive Noise," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    12. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    13. Gao, Jiti, 2002. "Modeling long-range dependent Gaussian processes with application in continuous-time financial models," MPRA Paper 11973, University Library of Munich, Germany, revised 18 Sep 2003.
    14. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    15. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    16. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.
    17. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    18. Miccichè, S., 2023. "A numerical recipe for the computation of stationary stochastic processes’ autocorrelation function," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Shuaiqiang Liu & Graziana Colonna & Lech A. Grzelak & Cornelis W. Oosterlee, 2023. "GPU acceleration of the Seven-League Scheme for large time step simulations of stochastic differential equations," Papers 2302.05170, arXiv.org.
    20. Casella, Bruno & Roberts, Gareth O. & Stramer, Osnat, 2011. "Stability of Partially Implicit Langevin Schemes and Their MCMC Variants," MPRA Paper 95220, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:133:y:2021:i:c:p:74-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.