IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v12y2010i3d10.1007_s11009-007-9066-y.html
   My bibliography  Save this article

Modeling Dependencies in Operational Risk with Hybrid Bayesian Networks

Author

Listed:
  • Stefan Mittnik

    (University of Munich)

  • Irina Starobinskaya

    (University of Munich)

Abstract

This paper addresses the problem of quantifying and modeling financial institutions’ operational risk in accordance with the Advanced Measurement Approach put forth in the Basel II Accord. We argue that standard approaches focusing on modeling stochastic dependencies are not sufficient to adequately assess operational risk. In addition to stochastic dependencies, causal topological dependencies between the risk classes are typically encountered. These dependencies arise when risk units have common information- and/or work-flows and when failure of upstream processes imply risk for downstream processes. In this paper, we present a modeling strategy that explicitly captures both topological and stochastic dependencies between risk classes. We represent the operational-risk taxonomy in the framework of a hybrid Bayesian network (BN) and provide an intuitively compelling approach for handling causal relationships and external influences. We demonstrate the use of hybrid BNs as a tool for mapping causal dependencies between frequencies and severities of risk events and for modeling common shocks. Monte-Carlo simulations illustrate that the impact of topological dependencies on triggering overall system breakdowns can be substantial.

Suggested Citation

  • Stefan Mittnik & Irina Starobinskaya, 2010. "Modeling Dependencies in Operational Risk with Hybrid Bayesian Networks," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 379-390, September.
  • Handle: RePEc:spr:metcap:v:12:y:2010:i:3:d:10.1007_s11009-007-9066-y
    DOI: 10.1007/s11009-007-9066-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-007-9066-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-007-9066-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frachot, Antoine & Roncalli, Thierry & Salomon, Eric, 2004. "The Correlation Problem in Operational Risk," MPRA Paper 38052, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornwell, Nikki & Bilson, Christopher & Gepp, Adrian & Stern, Steven & Vanstone, Bruce J., 2023. "Modernising operational risk management in financial institutions via data-driven causal factors analysis: A pre-registered report," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    2. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    3. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
    5. Yash Daultani & Mohit Goswami & Omkarprasad S. Vaidya & Sushil Kumar, 2019. "Inclusive risk modeling for manufacturing firms: a Bayesian network approach," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2789-2803, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    2. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    3. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    4. Xiaoqian Zhu & Jianping Li & Dengsheng Wu, 2019. "Should the Advanced Measurement Approach for Operational Risk be Discarded? Evidence from the Chinese Banking Industry," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-15, March.
    5. Kley, Oliver & Klüppelberg, Claudia & Paterlini, Sandra, 2020. "Modelling extremal dependence for operational risk by a bipartite graph," Journal of Banking & Finance, Elsevier, vol. 117(C).
    6. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    7. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    8. Hans Buhlmann & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "A "Toy" Model for Operational Risk Quantification using Credibility Theory," Papers 0904.1772, arXiv.org.
    9. Gabriela ANGHELACHE & Ana-Cornelia OLTEANU (PUIU) & Alina-Nicoleta RADU, 2010. "Operational Risk Measurement," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 215-223.
    10. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    11. Albrecht, Peter & Schwake, Edmund & Winter, Peter, 2007. "Quantifizierung operationeller Risiken: Der Loss Distribution Approach," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 3(1), pages 1-45.
    12. Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo & Venegas-Martínez, Francisco, 2015. "Riesgo operativo en el sector salud en Colombia [Operational Risk in the Health Sector in Colombia]," MPRA Paper 63149, University Library of Munich, Germany.
    13. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    14. Ming-Tao CHUNG & Ming-Hua HSIEH & Yan-Ping CHI, 2017. "Computation of Operational Risk for Financial Institutions," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 77-87, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:12:y:2010:i:3:d:10.1007_s11009-007-9066-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.