IDEAS home Printed from https://ideas.repec.org/a/zbw/grirej/68733.html
   My bibliography  Save this article

Quantifizierung operationeller Risiken: Der Loss Distribution Approach

Author

Listed:
  • Albrecht, Peter
  • Schwake, Edmund
  • Winter, Peter

Abstract

Im Rahmen der aktuellen Diskussion über die effektive Messung operationeller Risiken auf der Basis interner Modelle hat vor allem der Loss Distribution Approach in der Literatur besondere Beachtung gefunden. Dieser Ansatz hat seine Wurzeln in einem traditionellen Ansatz der Versicherungsmathematik, der kollektiven Risikotheorie. Die vorliegende Ausarbeitung stellt daher die kollektive Risikotheorie in ihren Grundelementen dar, stellt die Verbindung zur Modellierung operationeller Risiken her und gibt einen Überblick über aktuelle Entwicklungen im Rahmen des Loss Distribution Approach.

Suggested Citation

  • Albrecht, Peter & Schwake, Edmund & Winter, Peter, 2007. "Quantifizierung operationeller Risiken: Der Loss Distribution Approach," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 3(1), pages 1-45.
  • Handle: RePEc:zbw:grirej:68733
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/68733/1/635023962.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kabir K. Dutta & David F. Babbel, 2005. "Extracting Probabilistic Information from the Prices of Interest Rate Options: Tests of Distributional Assumptions," The Journal of Business, University of Chicago Press, vol. 78(3), pages 841-870, May.
    2. Patrick de Fontnouvelle & Eric Rosengren & John Jordan, 2007. "Implications of Alternative Operational Risk Modeling Techniques," NBER Chapters, in: The Risks of Financial Institutions, pages 475-505, National Bureau of Economic Research, Inc.
    3. Badrinath, S G & Chatterjee, Sangit, 1991. "A Data-Analytic Look at Skewness and Elongation in Common-Stock-Return Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 223-233, April.
    4. Paul Embrechts & Giovanni Puccetti, 2006. "Aggregating risk capital, with an application to operational risk," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 71-90, December.
    5. Beirlant, J. & Matthys, G. & Dierckx, G., 2001. "Heavy-Tailed Distributions and Rating," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 37-58, May.
    6. Albrecht, Peter, 1983. "Parametric multiple regression risk models: Connections with tariffication, especially in motor insurance," Insurance: Mathematics and Economics, Elsevier, vol. 2(2), pages 113-117, April.
    7. Albrecher, Hansjorg & Boxma, Onno J., 2004. "A ruin model with dependence between claim sizes and claim intervals," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 245-254, October.
    8. Stefan Kassberger & Rüdiger Kiesel, 2006. "A fully parametric approach to return modelling and risk management of hedge funds," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 472-491, December.
    9. Albrecht, Peter, 1983. "Parametric multiple regression risk models: Theory and statistical analysis," Insurance: Mathematics and Economics, Elsevier, vol. 2(1), pages 49-66, January.
    10. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    11. Frachot, Antoine & Roncalli, Thierry & Salomon, Eric, 2004. "The Correlation Problem in Operational Risk," MPRA Paper 38052, University Library of Munich, Germany.
    12. V. Chavez‐Demoulin & P. Embrechts, 2004. "Smooth Extremal Models in Finance and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(2), pages 183-199, June.
    13. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    14. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baringhaus, Ludwig & Gaigall, Daniel, 2023. "A goodness-of-fit test for the compound Poisson exponential model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    2. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    3. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    4. Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
    5. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    6. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    7. Sanjiv Jaggia & Alison Kelly-Hawke, 2009. "Modelling skewness and elongation in financial returns: the case of exchange-traded funds," Applied Financial Economics, Taylor & Francis Journals, vol. 19(16), pages 1305-1316.
    8. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    9. Kley, Oliver & Klüppelberg, Claudia & Paterlini, Sandra, 2020. "Modelling extremal dependence for operational risk by a bipartite graph," Journal of Banking & Finance, Elsevier, vol. 117(C).
    10. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    11. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    12. Hans Buhlmann & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "A "Toy" Model for Operational Risk Quantification using Credibility Theory," Papers 0904.1772, arXiv.org.
    13. Xu, Yihuan & Iglewicz, Boris & Chervoneva, Inna, 2014. "Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 66-80.
    14. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    15. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    16. Fischer, Matthias J., 2006. "Generalized Tukey-type distributions with application to financial and teletraffic data," Discussion Papers 72/2006, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    17. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating flexibility in open pit mine planning to survive commodity price decline," Resources Policy, Elsevier, vol. 81(C).
    18. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    19. Tursunalieva, Ainura & Silvapulle, Param, 2016. "Nonparametric estimation of operational value-at-risk (OpVaR)," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 194-201.
    20. Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:grirej:68733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: http://www.risk-insurance.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.