IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2017i3p77-87.html
   My bibliography  Save this article

Computation of Operational Risk for Financial Institutions

Author

Listed:
  • Ming-Tao CHUNG

    (Department of Management Information Systems, National Chengchi University, Taiwan (R.O.C.))

  • Ming-Hua HSIEH

    (Department of Risk Management and Insurance, National Chengchi University, Taiwan (R.O.C))

  • Yan-Ping CHI

    (Department of Management Information Systems, National Chengchi University, Taiwan (R.O.C))

Abstract

Quantification of operational risk has led to significant concern regarding regulation in the financial industry. Basel Accord II and III for banks and Solvency II for insurers require insurance companies and banks to allocate capital for operation risk. Because the risk measure used for Basel regulatory capital purposes reflects a confidence level of 99.9% during one year and the loss distribution of operational risk has high skewness and kurtosis, it is almost infeasible to get an accurate estimate of such a risk measure if a crude Monte Carlo approach is used. Therefore, we develop a novel importance sampling method for estimating such a risk measure. Numerical results demonstrate that the proposed method is very efficient and robust. The main contribution of this method is to provide a feasible and flexible numerical approach that delivers highly accurate estimates of operational risk with a high confidence level and meets the high international regulatory standard for quantification of operational risk.

Suggested Citation

  • Ming-Tao CHUNG & Ming-Hua HSIEH & Yan-Ping CHI, 2017. "Computation of Operational Risk for Financial Institutions," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 77-87, September.
  • Handle: RePEc:rjr:romjef:v::y:2017:i:3:p:77-87
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef3_17/rjef3_2017p77-87.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00544342, HAL.
    2. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2011. "An efficient threshold choice for operational risk capital computation," Post-Print halshs-00790217, HAL.
    3. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    4. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    5. Giulio Mignola & Roberto Ugoccioni & Eric Cope, 2016. "Comments on the BCBS proposal for a New Standardized Approach for Operational Risk," Papers 1607.00756, arXiv.org.
    6. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    7. Frachot, Antoine & Roncalli, Thierry & Salomon, Eric, 2004. "The Correlation Problem in Operational Risk," MPRA Paper 38052, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Aloqab & Farouk Alobaidi & Bassam Raweh, 2018. "Operational Risk Management in Financial Institutions: An Overview," Business and Economic Research, Macrothink Institute, vol. 8(2), pages 11-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    2. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    3. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    4. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    5. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    6. Dionne, Georges & Saissi-Hassani, Samir, 2016. "Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Working Papers 15-3, HEC Montreal, Canada Research Chair in Risk Management.
    7. Bertrand K. Hassani & Alexis Renaudin, 2018. "The Cascade Bayesian Approach: Prior Transformation for a Controlled Integration of Internal Data, External Data and Scenarios," Risks, MDPI, vol. 6(2), pages 1-17, April.
    8. Uddin, Md Hamid & Mollah, Sabur & Islam, Nazrul & Ali, Md Hakim, 2023. "Does digital transformation matter for operational risk exposure?," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    9. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2012.
    10. Dominique Guegan & Bertrand Hassani, 2015. "Risk or Regulatory Capital? Bringing distributions back in the foreground," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169268, HAL.
    11. Xiaoqian Zhu & Jianping Li & Dengsheng Wu, 2019. "Should the Advanced Measurement Approach for Operational Risk be Discarded? Evidence from the Chinese Banking Industry," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-15, March.
    12. Dominique Guegan & Bertrand Hassani, 2012. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Post-Print halshs-00587706, HAL.
    13. Kley, Oliver & Klüppelberg, Claudia & Paterlini, Sandra, 2020. "Modelling extremal dependence for operational risk by a bipartite graph," Journal of Banking & Finance, Elsevier, vol. 117(C).
    14. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    15. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    16. Hans Buhlmann & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "A "Toy" Model for Operational Risk Quantification using Credibility Theory," Papers 0904.1772, arXiv.org.
    17. Thomas Conlon & Xing Huan & Steven Ongena, 2020. "Operational Risk Capital," Swiss Finance Institute Research Paper Series 20-55, Swiss Finance Institute.
    18. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    19. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    20. Elshahat, A. & Parhizgari, Ali & Hong, Liang, 2012. "The information content of the Banking Regulatory Agencies and the Depository Credit Intermediation Institutions," Journal of Economics and Business, Elsevier, vol. 64(1), pages 90-104.

    More about this item

    Keywords

    operational risk; advanced measurement approaches; loss distribution approach; Monte Carlo simulation; variance reduction;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2017:i:3:p:77-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.