IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v94y2021i2d10.1007_s00186-021-00759-5.html
   My bibliography  Save this article

Nash equilibria in a class of Markov stopping games with total reward criterion

Author

Listed:
  • Rolando Cavazos-Cadena

    (Universidad Autónoma Agraria Antonio Narro)

  • Mario Cantú-Sifuentes

    (Universidad Autónoma Agraria Antonio Narro)

  • Imelda Cerda-Delgado

    (Universidad Autónoma Agraria Antonio Narro)

Abstract

This work is concerned with a class of discrete-time, zero-sum games with Markov transitions on a denumerable state space. At each decision time player II can stop the system paying a terminal reward to player I, or can let the system continue its evolution. If the system is not halted, player I selects an action which affects the transitions and receives a running reward from player II. The performance of a pair of decision strategies is measured by the total expected reward criterion and, under mild continuity-compactness conditions, communication-ergodicity properties are used to show that (i) the upper and lower value functions of the game coincide, and (ii) their common value is characterized as the unique fixed point of a nonexpansive operator from which a Nash equilibrium can be derived.

Suggested Citation

  • Rolando Cavazos-Cadena & Mario Cantú-Sifuentes & Imelda Cerda-Delgado, 2021. "Nash equilibria in a class of Markov stopping games with total reward criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 319-340, October.
  • Handle: RePEc:spr:mathme:v:94:y:2021:i:2:d:10.1007_s00186-021-00759-5
    DOI: 10.1007/s00186-021-00759-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-021-00759-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-021-00759-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. J. White, 1988. "Further Real Applications of Markov Decision Processes," Interfaces, INFORMS, vol. 18(5), pages 55-61, October.
    2. Ramsey, David M. & Szajowski, Krzysztof, 2008. "Selection of a correlated equilibrium in Markov stopping games," European Journal of Operational Research, Elsevier, vol. 184(1), pages 185-206, January.
    3. Nicole Bäuerle & Ulrich Rieder, 2014. "More Risk-Sensitive Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 105-120, February.
    4. Tomasz Bielecki & Daniel Hernández-Hernández & Stanley R. Pliska, 1999. "Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 167-188, October.
    5. Douglas J. White, 1985. "Real Applications of Markov Decision Processes," Interfaces, INFORMS, vol. 15(6), pages 73-83, December.
    6. Goran Peskir, 2005. "On The American Option Problem," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 169-181, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Victoria C. P., 1999. "Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 317-341, May.
    2. Zong-Zhi Lin & James C. Bean & Chelsea C. White, 2004. "A Hybrid Genetic/Optimization Algorithm for Finite-Horizon, Partially Observed Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 27-38, February.
    3. Epaminondas G. Kyriakidis & Theodosis D. Dimitrakos, 2005. "Computation of the Optimal Policy for the Control of a Compound Immigration Process through Total Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 97-118, March.
    4. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    5. Kao, Jih-Forg, 1995. "Optimal recovery strategies for manufacturing systems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 252-263, January.
    6. So, Meko M.C. & Thomas, Lyn C., 2011. "Modelling the profitability of credit cards by Markov decision processes," European Journal of Operational Research, Elsevier, vol. 212(1), pages 123-130, July.
    7. Buonaguidi, B., 2023. "An optimal sequential procedure for determining the drift of a Brownian motion among three values," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 320-349.
    8. Qingda Wei & Xian Chen, 2023. "Continuous-Time Markov Decision Processes Under the Risk-Sensitive First Passage Discounted Cost Criterion," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 309-333, April.
    9. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    10. O. L. V. Costa & F. Dufour, 2021. "Integro-differential optimality equations for the risk-sensitive control of piecewise deterministic Markov processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 327-357, April.
    11. Dammann, Felix & Ferrari, Giorgio, 2021. "On an Irreversible Investment Problem with Two-Factor Uncertainty," Center for Mathematical Economics Working Papers 646, Center for Mathematical Economics, Bielefeld University.
    12. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    13. Bhabak, Arnab & Saha, Subhamay, 2022. "Risk-sensitive semi-Markov decision problems with discounted cost and general utilities," Statistics & Probability Letters, Elsevier, vol. 184(C).
    14. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    15. Grosfeld-Nir, Abraham, 2007. "Control limits for two-state partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 182(1), pages 300-304, October.
    16. Felix Dammann & Giorgio Ferrari, 2023. "Optimal execution with multiplicative price impact and incomplete information on the return," Finance and Stochastics, Springer, vol. 27(3), pages 713-768, July.
    17. Johnson, P. & Pedersen, J.L. & Peskir, G. & Zucca, C., 2022. "Detecting the presence of a random drift in Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1068-1090.
    18. Tomasz R. Bielecki & Igor Cialenco & Andrzej Ruszczy'nski, 2022. "Risk Filtering and Risk-Averse Control of Markovian Systems Subject to Model Uncertainty," Papers 2206.09235, arXiv.org.
    19. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Jun 2024.
    20. Dammann, Felix & Ferrari, Giorgio, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Center for Mathematical Economics Working Papers 663, Center for Mathematical Economics, Bielefeld University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:94:y:2021:i:2:d:10.1007_s00186-021-00759-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.