IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v22y2015i3p238-260.html
   My bibliography  Save this article

The British Lookback Option with Fixed Strike

Author

Listed:
  • Yerkin Kitapbayev

Abstract

We continue research of the new type of options called 'British' that was introduced recently by presenting the British lookback option with fixed strike. This article generalizes the work about the British Russian option and provides financial analysis of lookback options with fixed non-zero strike. The British holder enjoys the early exercise feature of American options whereupon his pay-off (deliverable immediately) is the 'best prediction' of the European lookback pay-off under the hypothesis that the true drift of the stock price equals a contract drift. We derive a closed-form expression for the arbitrage-free price in terms of the optimal stopping boundary of two-dimensional optimal stopping problem with a scaling strike and show that the rational exercise boundary of the option can be characterized via the unique solution to a nonlinear integral equation. We also show the remarkable numerical example where the rational exercise boundary exhibits a discontinuity. Using these results, we perform a financial analysis of the British lookback option with fixed strike, which shows that with the contract drift properly selected this instrument not only provides an effective protection mechanism, but becomes a very attractive alternative to the classic European/American lookback option from speculator's point of view and gives high returns when stock movements are favourable.

Suggested Citation

  • Yerkin Kitapbayev, 2015. "The British Lookback Option with Fixed Strike," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 238-260, July.
  • Handle: RePEc:taf:apmtfi:v:22:y:2015:i:3:p:238-260
    DOI: 10.1080/1350486X.2015.1019156
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2015.1019156
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2015.1019156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristoffer Glover & Goran Peskir & Farman Samee, 2010. "The British Russian Option," Research Paper Series 269, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Goran Peskir & Farman Samee, 2013. "The British call option," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 95-109, January.
    3. Goran Peskir & Farman Samee, 2011. "The British Put Option," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(6), pages 537-563, April.
    4. Gapeev, Pavel V., 2006. "Discounted optimal stopping for maxima of some jump-diffusion processes," SFB 649 Discussion Papers 2006-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Gapeev, Pavel V., 2006. "Discounted optimal stopping for maxima in diffusion models with finite horizon," SFB 649 Discussion Papers 2006-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Kristoffer Glover & Goran Peskir & Farman Samee, 2009. "The British Asian Option," Research Paper Series 249, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Goran Peskir, 2005. "On The American Option Problem," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 169-181, January.
    8. Goran Peskir, 2005. "The Russian option: Finite horizon," Finance and Stochastics, Springer, vol. 9(2), pages 251-267, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damir Filipovic & Yerkin Kitapbayev, 2016. "On the American swaption in the linear-rational framework," Papers 1607.02067, arXiv.org, revised Feb 2018.
    2. Min Gao, 2017. "The British Asset-Or-Nothing Put Option," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Kruse & Philipp Strack, 2019. "An Inverse Optimal Stopping Problem for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 423-439, May.
    2. Luluwah Al-Fagih, 2015. "The British Knock-Out Put Option," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-32.
    3. Min Gao, 2017. "The British Asset-Or-Nothing Put Option," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-19, June.
    4. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    5. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Jun 2024.
    6. repec:hum:wpaper:sfb649dp2006-057 is not listed on IDEAS
    7. Duistermaat, J.J. & Kyprianou, A.E. & van Schaik, K., 2005. "Finite expiry Russian options," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 609-638, April.
    8. Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
    9. Yue Liu & Nicolas Privault, 2018. "A Recursive Algorithm for Selling at the Ultimate Maximum in Regime-Switching Models," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 369-384, March.
    10. Zhenya Liu & Yuhao Mu, 2022. "Optimal Stopping Methods for Investment Decisions: A Literature Review," IJFS, MDPI, vol. 10(4), pages 1-23, October.
    11. Belomestny, Denis & Gapeev, Pavel V., 2006. "An iteration procedure for solving integral equations related to optimal stopping problems," SFB 649 Discussion Papers 2006-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Gapeev, Pavel V., 2022. "Discounted optimal stopping problems in continuous hidden Markov models," LSE Research Online Documents on Economics 110493, London School of Economics and Political Science, LSE Library.
    13. repec:hum:wpaper:sfb649dp2006-043 is not listed on IDEAS
    14. Gapeev, Pavel V., 2006. "Discounted optimal stopping for maxima in diffusion models with finite horizon," SFB 649 Discussion Papers 2006-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Tim Leung & Peng Liu, 2013. "An Optimal Timing Approach to Option Portfolio Risk Management," Palgrave Macmillan Books, in: Jonathan A. Batten & Peter MacKay & Niklas Wagner (ed.), Advances in Financial Risk Management, chapter 17, pages 391-404, Palgrave Macmillan.
    16. Bruno Buonaguidi, 2023. "Finite Horizon Sequential Detection with Exponential Penalty for the Delay," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 224-238, July.
    17. Buonaguidi, B., 2023. "An optimal sequential procedure for determining the drift of a Brownian motion among three values," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 320-349.
    18. Dammann, Felix & Ferrari, Giorgio, 2021. "On an Irreversible Investment Problem with Two-Factor Uncertainty," Center for Mathematical Economics Working Papers 646, Center for Mathematical Economics, Bielefeld University.
    19. Kimura, Toshikazu, 2008. "Valuing finite-lived Russian options," European Journal of Operational Research, Elsevier, vol. 189(2), pages 363-374, September.
    20. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    21. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    22. Tim Leung & Michael Ludkovski, 2010. "Optimal Timing to Purchase Options," Papers 1008.3650, arXiv.org, revised Apr 2011.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:22:y:2015:i:3:p:238-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.