IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v100y2024i2d10.1007_s00186-024-00864-1.html
   My bibliography  Save this article

Discrete-time stopping games with risk-sensitive discounted cost criterion

Author

Listed:
  • Wenzhao Zhang

    (Fuzhou University
    Center for Applied Mathematics of Fujian Province)

  • Congying Liu

    (Fuzhou University)

Abstract

In this paper, we focus on the discrete-time stopping games under the risk-sensitive discounted cost criterion. The state space and the action spaces of all the players are assumed to be Borel spaces. The cost functions are allowed to be unbounded from above and from below. At each decision epoch, each player chooses an action to influence the transition laws, and player 1 incurs a running cost. If players 1 or 2 decides to stop the game, player 1 incurs a corresponding terminated cost. Under suitable hypothesis, we show that the game model has a value which is a unique solution of risk-sensitive stopping optimality equation by an approximation technique. Furthermore, we derive the existence of equilibria.

Suggested Citation

  • Wenzhao Zhang & Congying Liu, 2024. "Discrete-time stopping games with risk-sensitive discounted cost criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(2), pages 437-466, October.
  • Handle: RePEc:spr:mathme:v:100:y:2024:i:2:d:10.1007_s00186-024-00864-1
    DOI: 10.1007/s00186-024-00864-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-024-00864-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-024-00864-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, Arnab & Ghosh, Mrinal Kanti, 2014. "Zero-sum risk-sensitive stochastic games on a countable state space," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 961-983.
    2. Qingda Wei & Xian Chen, 2021. "Nonzero-sum Risk-Sensitive Average Stochastic Games: The Case of Unbounded Costs," Dynamic Games and Applications, Springer, vol. 11(4), pages 835-862, December.
    3. Bäuerle, Nicole & Rieder, Ulrich, 2017. "Zero-sum risk-sensitive stochastic games," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 622-642.
    4. Xiangxiang Huang & Xianping Guo, 2020. "Nonzero-Sum Stochastic Games with Probability Criteria," Dynamic Games and Applications, Springer, vol. 10(2), pages 509-527, June.
    5. Rolando Cavazos-Cadena & Mario Cantú-Sifuentes & Imelda Cerda-Delgado, 2021. "Nash equilibria in a class of Markov stopping games with total reward criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 319-340, October.
    6. Arnab Basu & Mrinal K. Ghosh, 2018. "Nonzero-Sum Risk-Sensitive Stochastic Games on a Countable State Space," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 516-532, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Mrinal K. & Golui, Subrata & Pal, Chandan & Pradhan, Somnath, 2023. "Discrete-time zero-sum games for Markov chains with risk-sensitive average cost criterion," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 40-74.
    2. Qingda Wei & Xian Chen, 2019. "Risk-Sensitive Average Equilibria for Discrete-Time Stochastic Games," Dynamic Games and Applications, Springer, vol. 9(2), pages 521-549, June.
    3. Chen, Fang & Guo, Xianping, 2023. "Two-person zero-sum risk-sensitive stochastic games with incomplete reward information on one side," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 218-245.
    4. Qingda Wei & Xian Chen, 2021. "Nonzero-sum Risk-Sensitive Average Stochastic Games: The Case of Unbounded Costs," Dynamic Games and Applications, Springer, vol. 11(4), pages 835-862, December.
    5. Subrata Golui & Chandan Pal & Subhamay Saha, 2022. "Continuous-Time Zero-Sum Games for Markov Decision Processes with Discounted Risk-Sensitive Cost Criterion," Dynamic Games and Applications, Springer, vol. 12(2), pages 485-512, June.
    6. Julio Saucedo-Zul & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2020. "A Discounted Approach in Communicating Average Markov Decision Chains Under Risk-Aversion," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 585-606, November.
    7. Tomasz R. Bielecki & Igor Cialenco & Andrzej Ruszczy'nski, 2022. "Risk Filtering and Risk-Averse Control of Markovian Systems Subject to Model Uncertainty," Papers 2206.09235, arXiv.org.
    8. Hubert Asienkiewicz & Łukasz Balbus, 2019. "Existence of Nash equilibria in stochastic games of resource extraction with risk-sensitive players," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 502-518, October.
    9. Bäuerle, Nicole & Rieder, Ulrich, 2017. "Zero-sum risk-sensitive stochastic games," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 622-642.
    10. Qiuli Liu & Wai-Ki Ching & Xianping Guo, 2023. "Zero-sum stochastic games with the average-value-at-risk criterion," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 618-647, October.
    11. Gustavo Portillo-Ramírez & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2023. "Contractive approximations in average Markov decision chains driven by a risk-seeking controller," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 75-91, August.
    12. Cao, Haoyang & Guo, Xin, 2022. "MFGs for partially reversible investment," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 995-1014.
    13. Arnab Basu & Mrinal K. Ghosh, 2018. "Nonzero-Sum Risk-Sensitive Stochastic Games on a Countable State Space," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 516-532, May.
    14. Elena Parilina & Stepan Akimochkin, 2021. "Cooperative Stochastic Games with Mean-Variance Preferences," Mathematics, MDPI, vol. 9(3), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:100:y:2024:i:2:d:10.1007_s00186-024-00864-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.