IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v92y2020i2d10.1007_s00186-020-00709-7.html
   My bibliography  Save this article

A new nonmonotone smoothing Newton method for the symmetric cone complementarity problem with the Cartesian $$P_0$$ P 0 -property

Author

Listed:
  • Xiangjing Liu

    (Xidian University)

  • Sanyang Liu

    (Xidian University)

Abstract

We present a new smoothing Newton method for the symmetric cone complementarity problem with the Cartesian $$P_0$$ P 0 -property. The new method is based on a new smoothing function and a nonmonotone line search which contains a monotone line search as a special case. It is proved that the new method is globally and locally superlinearly/quadratically convergent under mild conditions. Preliminary numerical results are also reported which indicate the proposed method is promising.

Suggested Citation

  • Xiangjing Liu & Sanyang Liu, 2020. "A new nonmonotone smoothing Newton method for the symmetric cone complementarity problem with the Cartesian $$P_0$$ P 0 -property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 229-247, October.
  • Handle: RePEc:spr:mathme:v:92:y:2020:i:2:d:10.1007_s00186-020-00709-7
    DOI: 10.1007/s00186-020-00709-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-020-00709-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-020-00709-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuan-Min & Wei, Deyun, 2015. "A generalized smoothing Newton method for the symmetric cone complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 335-345.
    2. Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
    3. Zheng-Hai Huang & Tie Ni, 2010. "Smoothing algorithms for complementarity problems over symmetric cones," Computational Optimization and Applications, Springer, vol. 45(3), pages 557-579, April.
    4. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2009. "Vector-Valued Implicit Lagrangian For Symmetric Cone Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(02), pages 199-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    2. Nan Lu & Zheng-Hai Huang, 2014. "A Smoothing Newton Algorithm for a Class of Non-monotonic Symmetric Cone Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 446-464, May.
    3. Jingyong Tang & Jinchuan Zhou, 2020. "Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones," Annals of Operations Research, Springer, vol. 295(2), pages 787-808, December.
    4. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.
    5. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    6. Jingyong Tang & Jinchuan Zhou, 2021. "A smoothing quasi-Newton method for solving general second-order cone complementarity problems," Journal of Global Optimization, Springer, vol. 80(2), pages 415-438, June.
    7. Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
    8. Liqun Qi & Zheng-Hai Huang, 2019. "Tensor Complementarity Problems—Part II: Solution Methods," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 365-385, November.
    9. Li, Yuan-Min & Wei, Deyun, 2015. "A generalized smoothing Newton method for the symmetric cone complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 335-345.
    10. Tang, Jingyong & Zhou, Jinchuan & Fang, Liang, 2015. "A non-monotone regularization Newton method for the second-order cone complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 743-756.
    11. S. H. Pan & J.-S. Chen, 2009. "Growth Behavior of Two Classes of Merit Functions for Symmetric Cone Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 167-191, April.
    12. Yingnan Wang & Naihua Xiu, 2011. "Strong Semismoothness of Projection onto Slices of Second-Order Cone," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 599-614, September.
    13. Yue Lu & Ching-Yu Yang & Jein-Shan Chen & Hou-Duo Qi, 2020. "The decompositions with respect to two core non-symmetric cones," Journal of Global Optimization, Springer, vol. 76(1), pages 155-188, January.
    14. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2011. "Equivalent Conditions for Jacobian Nonsingularity in Linear Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 364-389, February.
    15. Enzo Busseti & Walaa M. Moursi & Stephen Boyd, 2019. "Solution refinement at regular points of conic problems," Computational Optimization and Applications, Springer, vol. 74(3), pages 627-643, December.
    16. Nooshin Movahedian, 2014. "Nonsmooth Calculus of Semismooth Functions and Maps," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 415-438, February.
    17. Sangho Kum & Sangwoon Yun, 2017. "Incremental Gradient Method for Karcher Mean on Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 141-155, January.
    18. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    19. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2009. "Vector-Valued Implicit Lagrangian For Symmetric Cone Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(02), pages 199-233.
    20. Xin-He Miao & Yu-Lin Chang & Jein-Shan Chen, 2017. "On merit functions for p-order cone complementarity problem," Computational Optimization and Applications, Springer, vol. 67(1), pages 155-173, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:92:y:2020:i:2:d:10.1007_s00186-020-00709-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.