IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v67y2017i1d10.1007_s10589-016-9889-y.html
   My bibliography  Save this article

On merit functions for p-order cone complementarity problem

Author

Listed:
  • Xin-He Miao

    (Tianjin University)

  • Yu-Lin Chang

    (National Taiwan Normal University)

  • Jein-Shan Chen

    (National Taiwan Normal University)

Abstract

Merit function approach is a popular method to deal with complementarity problems, in which the complementarity problem is recast as an unconstrained minimization via merit function or complementarity function. In this paper, for the complementarity problem associated with p-order cone, which is a type of nonsymmetric cone complementarity problem, we show the readers how to construct merit functions for solving p-order cone complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also assert that these merit functions provide an error bound for the p-order cone complementarity problem. These results build up a theoretical basis for the merit method for solving p-order cone complementarity problem.

Suggested Citation

  • Xin-He Miao & Yu-Lin Chang & Jein-Shan Chen, 2017. "On merit functions for p-order cone complementarity problem," Computational Optimization and Applications, Springer, vol. 67(1), pages 155-173, May.
  • Handle: RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9889-y
    DOI: 10.1007/s10589-016-9889-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9889-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9889-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jein-Shan Chen, 2006. "Two classes of merit functions for the second-order cone complementarity problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(3), pages 495-519, December.
    2. Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
    3. J.-S. Chen, 2007. "Conditions for Error Bounds and Bounded Level Sets of Some Merit Functions for the Second-Order Cone Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 459-473, December.
    4. Xin-He Miao & Shengjuan Guo & Nuo Qi & Jein-Shan Chen, 2016. "Constructions of complementarity functions and merit functions for circular cone complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 495-522, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin-He Miao & Yen-chi Roger Lin & Jein-Shan Chen, 2017. "A Note on the Paper “The Algebraic Structure of the Arbitrary-Order Cone”," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 1066-1070, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin-He Miao & Shengjuan Guo & Nuo Qi & Jein-Shan Chen, 2016. "Constructions of complementarity functions and merit functions for circular cone complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 495-522, March.
    2. J.-S. Chen, 2007. "Conditions for Error Bounds and Bounded Level Sets of Some Merit Functions for the Second-Order Cone Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 459-473, December.
    3. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    4. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    5. Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
    6. Shaohua Pan & Jein-Shan Chen & Sangho Kum & Yongdo Lim, 2011. "The penalized Fischer-Burmeister SOC complementarity function," Computational Optimization and Applications, Springer, vol. 49(3), pages 457-491, July.
    7. S. H. Pan & J.-S. Chen, 2009. "Growth Behavior of Two Classes of Merit Functions for Symmetric Cone Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 167-191, April.
    8. Xiangjing Liu & Sanyang Liu, 2020. "A new nonmonotone smoothing Newton method for the symmetric cone complementarity problem with the Cartesian $$P_0$$ P 0 -property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 229-247, October.
    9. Jingyong Tang & Jinchuan Zhou, 2020. "Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones," Annals of Operations Research, Springer, vol. 295(2), pages 787-808, December.
    10. Nan Lu & Zheng-Hai Huang, 2014. "A Smoothing Newton Algorithm for a Class of Non-monotonic Symmetric Cone Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 446-464, May.
    11. Yingnan Wang & Naihua Xiu, 2011. "Strong Semismoothness of Projection onto Slices of Second-Order Cone," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 599-614, September.
    12. Yue Lu & Ching-Yu Yang & Jein-Shan Chen & Hou-Duo Qi, 2020. "The decompositions with respect to two core non-symmetric cones," Journal of Global Optimization, Springer, vol. 76(1), pages 155-188, January.
    13. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.
    14. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2011. "Equivalent Conditions for Jacobian Nonsingularity in Linear Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 364-389, February.
    15. Enzo Busseti & Walaa M. Moursi & Stephen Boyd, 2019. "Solution refinement at regular points of conic problems," Computational Optimization and Applications, Springer, vol. 74(3), pages 627-643, December.
    16. Linan Qu & Shujie Zhang & Hsiung-Cheng Lin & Ning Chen & Lingling Li, 2020. "Multiobjective Reactive Power Optimization of Renewable Energy Power Plants Based on Time-and-Space Grouping Method," Energies, MDPI, vol. 13(14), pages 1-15, July.
    17. Nooshin Movahedian, 2014. "Nonsmooth Calculus of Semismooth Functions and Maps," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 415-438, February.
    18. Sangho Kum & Sangwoon Yun, 2017. "Incremental Gradient Method for Karcher Mean on Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 141-155, January.
    19. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2009. "Vector-Valued Implicit Lagrangian For Symmetric Cone Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(02), pages 199-233.
    20. Wang, Guoxin & Zhang, Jin & Zeng, Bo & Lin, Gui-Hua, 2018. "Expected residual minimization formulation for a class of stochastic linear second-order cone complementarity problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 437-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9889-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.