IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v143y2002i2p390-405.html
   My bibliography  Save this article

Linear semi-infinite programming theory: An updated survey

Author

Listed:
  • Goberna, M. A.
  • Lopez, M. A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Goberna, M. A. & Lopez, M. A., 2002. "Linear semi-infinite programming theory: An updated survey," European Journal of Operational Research, Elsevier, vol. 143(2), pages 390-405, December.
  • Handle: RePEc:eee:ejores:v:143:y:2002:i:2:p:390-405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00327-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Zlobec, 2001. "Stability in Linear Programming Models: An Index Set Approach," Annals of Operations Research, Springer, vol. 101(1), pages 363-382, January.
    2. M.J. Cánovas & M.A. López & J. Parra & M.I. Todorov, 2001. "Solving Strategies and Well-Posedness in Linear Semi-Infinite Programming," Annals of Operations Research, Springer, vol. 101(1), pages 171-190, January.
    3. Teresa León & Susana Sanmatías & Enriqueta Vercher, 1998. "A multi-local optimization algorithm," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 1-18, June.
    4. Edward J. Anderson & Miguel A. Goberna & Marco A. López, 2001. "Simplex-Like Trajectories on Quasi-Polyhedral Sets," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 147-162, February.
    5. Francisco Guerra & Miguel Jiménez, 1998. "On feasible sets defined through Chebyshev approximation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(2), pages 255-264, June.
    6. A. Charnes & W. W. Cooper & K. Kortanek, 1963. "Duality in Semi-Infinite Programs and Some Works of Haar and Carathéodory," Management Science, INFORMS, vol. 9(2), pages 209-228, January.
    7. M. Gugat, 1999. "Convex Semi-Infinite Parametric Programming: Uniform Convergence of the Optimal Value Functions of Discretized Problems," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 191-201, April.
    8. M. A. Goberna & V. Jornet & R. Puente & M. I. Todorov, 1999. "Analytical Linear Inequality Systems and Optimization," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 95-119, October.
    9. Leon, T. & Sanmatias, S. & Vercher, E., 2000. "On the numerical treatment of linearly constrained semi-infinite optimization problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 78-91, February.
    10. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad R. Oskoorouchi & Hamid R. Ghaffari & Tamás Terlaky & Dionne M. Aleman, 2011. "An Interior Point Constraint Generation Algorithm for Semi-Infinite Optimization with Health-Care Application," Operations Research, INFORMS, vol. 59(5), pages 1184-1197, October.
    2. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    3. Balendu Bhooshan Upadhyay & Arnav Ghosh & Savin Treanţă, 2024. "Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 89(3), pages 723-744, July.
    4. Jeyakumar, V. & Li, G., 2010. "New strong duality results for convex programs with separable constraints," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1203-1209, December.
    5. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    6. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    7. Nazih Abderrazzak Gadhi, 2019. "Necessary optimality conditions for a nonsmooth semi-infinite programming problem," Journal of Global Optimization, Springer, vol. 74(1), pages 161-168, May.
    8. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    9. S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
    10. Zhu, Y. & Huang, G.H. & Li, Y.P. & He, L. & Zhang, X.X., 2011. "An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing," Applied Energy, Elsevier, vol. 88(8), pages 2846-2862, August.
    11. Amitabh Basu & Kipp Martin & Christopher Thomas Ryan, 2015. "Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 146-170, February.
    12. Archis Ghate & Dushyant Sharma & Robert L. Smith, 2010. "A Shadow Simplex Method for Infinite Linear Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 865-877, August.
    13. Hassan Bakhtiari & Hossein Mohebi, 2021. "Lagrange Multiplier Characterizations of Constrained Best Approximation with Infinite Constraints," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 814-835, June.
    14. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    2. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    3. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    4. María J. Cánovas & Marco A. López & Juan Parra, 2002. "Stability in the Discretization of a Parametric Semi-Infinite Convex Inequality System," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 755-774, November.
    5. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    6. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    7. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    8. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    9. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    10. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    11. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    12. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    13. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    14. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    15. Canovas, M.J. & Lopez, M.A. & Parra, J. & Toledo, F.J., 2007. "Sufficient conditions for total ill-posedness in linear semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1126-1136, September.
    16. Evers, L. & Dollevoet, T.A.B. & Barros, A.I. & Monsuur, H., 2011. "Robust UAV Mission Planning," Econometric Institute Research Papers EI 2011-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    18. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    19. Mínguez, R. & García-Bertrand, R., 2016. "Robust transmission network expansion planning in energy systems: Improving computational performance," European Journal of Operational Research, Elsevier, vol. 248(1), pages 21-32.
    20. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:143:y:2002:i:2:p:390-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.