IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v178y2018i3d10.1007_s10957-018-1339-9.html
   My bibliography  Save this article

Modeling Stochastic Dominance as Infinite-Dimensional Constraint Systems via the Strassen Theorem

Author

Listed:
  • William B. Haskell

    (National University of Singapore)

  • Alejandro Toriello

    (Georgia Institute of Technology)

Abstract

We use the Strassen theorem to solve stochastic optimization problems with stochastic dominance constraints. First, we show that a dominance-constrained problem on general probability spaces can be expressed as an infinite-dimensional optimization problem with a convenient representation of the dominance constraints provided by the Strassen theorem. This result generalizes earlier work which was limited to finite probability spaces. Second, we derive optimality conditions and a duality theory to gain insight into this optimization problem. Finally, we present a computational scheme for constructing finite approximations along with a convergence rate analysis on the approximation quality.

Suggested Citation

  • William B. Haskell & Alejandro Toriello, 2018. "Modeling Stochastic Dominance as Infinite-Dimensional Constraint Systems via the Strassen Theorem," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 726-742, September.
  • Handle: RePEc:spr:joptap:v:178:y:2018:i:3:d:10.1007_s10957-018-1339-9
    DOI: 10.1007/s10957-018-1339-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1339-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1339-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    2. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    3. Yu Nie & Xing Wu & Tito Homem-de-Mello, 2012. "Optimal Path Problems with Second-Order Stochastic Dominance Constraints," Networks and Spatial Economics, Springer, vol. 12(4), pages 561-587, December.
    4. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, University Library of Munich, Germany, revised 07 Aug 2005.
    5. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    6. Radu Ioan Bot, 2010. "Conjugate Duality in Convex Optimization," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-04900-2, July.
    7. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    2. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    3. Nilay Noyan & Gábor Rudolf, 2013. "Optimization with Multivariate Conditional Value-at-Risk Constraints," Operations Research, INFORMS, vol. 61(4), pages 990-1013, August.
    4. William B. Haskell & J. George Shanthikumar & Z. Max Shen, 2017. "Aspects of optimization with stochastic dominance," Annals of Operations Research, Springer, vol. 253(1), pages 247-273, June.
    5. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    6. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    7. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    8. Andrey Lizyayev, 2010. "Stochastic Dominance Efficiency Analysis of Diversified Portfolios: Classification, Comparison and Refinements," Tinbergen Institute Discussion Papers 10-084/2, Tinbergen Institute.
    9. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.
    10. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    11. Amita Sharma & Aparna Mehra, 2017. "Financial analysis based sectoral portfolio optimization under second order stochastic dominance," Annals of Operations Research, Springer, vol. 256(1), pages 171-197, September.
    12. Dentcheva Darinka & Stock Gregory J. & Rekeda Ludmyla, 2011. "Mean-risk tests of stochastic dominance," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 97-118, May.
    13. Xiao Liu & Simge Küçükyavuz & Nilay Noyan, 2017. "Robust multicriteria risk-averse stochastic programming models," Annals of Operations Research, Springer, vol. 259(1), pages 259-294, December.
    14. Dupačová, Jitka & Kopa, Miloš, 2014. "Robustness of optimal portfolios under risk and stochastic dominance constraints," European Journal of Operational Research, Elsevier, vol. 234(2), pages 434-441.
    15. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    16. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    17. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    18. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    19. Andrea Attar & Thomas Mariotti & François Salanié, 2021. "Entry-Proofness and Discriminatory Pricing under Adverse Selection," American Economic Review, American Economic Association, vol. 111(8), pages 2623-2659, August.
    20. Askoura, Youcef & Billot, Antoine, 2021. "Social decision for a measure society," Journal of Mathematical Economics, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:178:y:2018:i:3:d:10.1007_s10957-018-1339-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.