IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v88y2018i1d10.1007_s00186-018-0630-8.html
   My bibliography  Save this article

Generalized average shadow prices and bottlenecks

Author

Listed:
  • Alejandro Crema

    (Universidad Central de Venezuela)

Abstract

Usually some of the constraints of a 0-1-Mixed Integer Linear Programming problem correspond to resources and in this paper we suppose that they may be redefined. For the availability of the resources the average shadow price is the maximum price that the decision maker is willing to pay for an additional unit of the package (i.e. a combination) of resources defined by some direction. In this paper we present a generalization of the average shadow price and its relation with bottlenecks including the analysis relative to the coefficients matrix of resource constraints. The generalization presented does not have some limitations of the usual average shadow price. A mathematical programming approach to find the strategy for investment in resources is presented.

Suggested Citation

  • Alejandro Crema, 2018. "Generalized average shadow prices and bottlenecks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 99-124, August.
  • Handle: RePEc:spr:mathme:v:88:y:2018:i:1:d:10.1007_s00186-018-0630-8
    DOI: 10.1007/s00186-018-0630-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-018-0630-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-018-0630-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamada, Takeo & Takeoka, Takahiro, 2009. "An exact algorithm for the fixed-charge multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 700-705, January.
    2. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    3. Chatterjee A K & Mukherjee, Saral, 2006. "Unified Concept of Bottleneck," IIMA Working Papers WP2006-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Crema, Alejandro, 1995. "Average shadow price in a mixed integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 625-635, September.
    5. Zuidwijk, R.A., 2005. "Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs," ERIM Report Series Research in Management ERS-2005-055-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Jansen, B. & de Jong, J. J. & Roos, C. & Terlaky, T., 1997. "Sensitivity analysis in linear programming: just be careful!," European Journal of Operational Research, Elsevier, vol. 101(1), pages 15-28, August.
    7. Kim, Sehun & Cho, Seong-cheol, 1988. "A shadow price in integer programming for management decision," European Journal of Operational Research, Elsevier, vol. 37(3), pages 328-335, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukherjee, Saral & Chatterjee, A.K., 2006. "The average shadow price for MILPs with integral resource availability and its relationship to the marginal unit shadow price," European Journal of Operational Research, Elsevier, vol. 169(1), pages 53-64, February.
    2. Chatterjee A K & Mukherjee, Saral, 2006. "Unified Concept of Bottleneck," IIMA Working Papers WP2006-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Liao, Chao-ning & Önal, Hayri & Chen, Ming-Hsiang, 2009. "Average shadow price and equilibrium price: A case study of tradable pollution permit markets," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1207-1213, August.
    4. Yong Liang & Mengshi Lu & Zuo‐Jun Max Shen & Runyu Tang, 2021. "Data Center Network Design for Internet‐Related Services and Cloud Computing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2077-2101, July.
    5. Onal, Hayri & Liao, Chao-Ning, 2002. "An Economic Analysis Of The Emission Reduction Market System In Chicago," 2002 Annual meeting, July 28-31, Long Beach, CA 19717, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Kellermann, Konrad & Sahrbacher, Christoph & Balmann, Alfons, 2008. "Land Markets In Agent Based Models Of Structural Change," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6647, European Association of Agricultural Economists.
    7. Illes, Tibor & Terlaky, Tamas, 2002. "Pivot versus interior point methods: Pros and cons," European Journal of Operational Research, Elsevier, vol. 140(2), pages 170-190, July.
    8. Ehsan Salari & H. Edwin Romeijn, 2012. "Quantifying the Trade-off Between IMRT Treatment Plan Quality and Delivery Efficiency Using Direct Aperture Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 518-533, November.
    9. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    10. Crema, Alejandro, 1995. "Average shadow price in a mixed integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 625-635, September.
    11. Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
    12. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    13. SMEERS, Yves, 2005. "Long term locational prices and investment incentives in the transmission of electricity," LIDAM Discussion Papers CORE 2005030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Hadigheh, Alireza Ghaffari & Terlaky, Tamas, 2006. "Sensitivity analysis in linear optimization: Invariant support set intervals," European Journal of Operational Research, Elsevier, vol. 169(3), pages 1158-1175, March.
    15. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    16. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.
    17. Ramteen Sioshansif & Ashlin Tignor, 2012. "Do Centrally Committed Electricity Markets Provide Useful Price Signals?," The Energy Journal, , vol. 33(4), pages 96-118, October.
    18. Ramteen Sioshansi and Ashlin Tignor, 2012. "Do Centrally Committed Electricity Markets Provide Useful Price Signals?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    19. Ma, Kang-Ting & Lin, Chi-Jen & Wen, Ue-Pyng, 2013. "Type II sensitivity analysis of cost coefficients in the degenerate transportation problem," European Journal of Operational Research, Elsevier, vol. 227(2), pages 293-300.
    20. Nils Boysen & Simon Emde & Malte Fliedner, 2016. "The basic train makeup problem in shunting yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 207-233, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:88:y:2018:i:1:d:10.1007_s00186-018-0630-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.