IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v73y2011i3p301-337.html
   My bibliography  Save this article

Continuous and discrete flows over time

Author

Listed:
  • Ronald Koch
  • Ebrahim Nasrabadi
  • Martin Skutella

Abstract

Network flows over time form a fascinating area of research. They model the temporal dynamics of network flow problems occurring in a wide variety of applications. Research in this area has been pursued in two different and mainly independent directions with respect to time modeling: discrete and continuous time models. In this paper we deploy measure theory in order to introduce a general model of network flows over time combining both discrete and continuous aspects into a single model. Here, the flow on each arc is modeled as a Borel measure on the real line (time axis) which assigns to each suitable subset a real value, interpreted as the amount of flow entering the arc over the subset. We focus on the maximum flow problem formulated in a network where capacities on arcs are also given as Borel measures and storage might be allowed at the nodes of the network. We generalize the concept of cuts to the case of these Borel Flows and extend the famous MaxFlow-MinCut Theorem. Copyright Springer-Verlag 2011

Suggested Citation

  • Ronald Koch & Ebrahim Nasrabadi & Martin Skutella, 2011. "Continuous and discrete flows over time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 301-337, June.
  • Handle: RePEc:spr:mathme:v:73:y:2011:i:3:p:301-337
    DOI: 10.1007/s00186-011-0357-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-011-0357-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-011-0357-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    2. E. J. Anderson & P. Nash & A. B. Philpott, 1982. "A Class of Continuous Network Flow Problems," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 501-514, November.
    3. A. B. Philpott, 1990. "Continuous-Time Flows in Networks," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 640-661, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahar Bsaybes & Alain Quilliot & Annegret K. Wagler, 2019. "Fleet management for autonomous vehicles using flows in time-expanded networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 288-311, July.
    2. Natashia Boland & Thomas Kalinowski & Simranjit Kaur, 2016. "Scheduling arc shut downs in a network to maximize flow over time with a bounded number of jobs per time period," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 885-905, October.
    3. S. Khodayifar & M. A. Raayatpanah & P. M. Pardalos, 2019. "A polynomial time algorithm for the minimum flow problem in time-varying networks," Annals of Operations Research, Springer, vol. 272(1), pages 29-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    2. Koch, Ronald & Nasrabadi, Ebrahim, 2014. "Flows over time in time-varying networks: Optimality conditions and strong duality," European Journal of Operational Research, Elsevier, vol. 237(2), pages 580-589.
    3. S. Hashemi & Ebrahim Nasrabadi, 2012. "On solving continuous-time dynamic network flows," Journal of Global Optimization, Springer, vol. 53(3), pages 497-524, July.
    4. S Opasanon & E Miller-Hooks, 2009. "The Safest Escape problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1749-1758, December.
    5. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    6. Hong Zheng & Yi-Chang Chiu, 2011. "A Network Flow Algorithm for the Cell-Based Single-Destination System Optimal Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 45(1), pages 121-137, February.
    7. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    8. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    9. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    10. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    11. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    12. S. Khodayifar & M. A. Raayatpanah & P. M. Pardalos, 2019. "A polynomial time algorithm for the minimum flow problem in time-varying networks," Annals of Operations Research, Springer, vol. 272(1), pages 29-39, January.
    13. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2021. "A time-expanded network reduction matheuristic for the logistics service network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    14. Urmila Pyakurel & Tanka Nath Dhamala & Stephan Dempe, 2017. "Efficient continuous contraflow algorithms for evacuation planning problems," Annals of Operations Research, Springer, vol. 254(1), pages 335-364, July.
    15. Yosuke Hanawa & Yuya Higashikawa & Naoyuki Kamiyama & Naoki Katoh & Atsushi Takizawa, 2018. "The mixed evacuation problem," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1299-1314, November.
    16. Anke Stieber & Armin Fügenschuh, 2022. "Dealing with time in the multiple traveling salespersons problem with moving targets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 991-1017, September.
    17. Lim, Gino J. & Zangeneh, Shabnam & Reza Baharnemati, M. & Assavapokee, Tiravat, 2012. "A capacitated network flow optimization approach for short notice evacuation planning," European Journal of Operational Research, Elsevier, vol. 223(1), pages 234-245.
    18. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    19. Hongmei Li & Yinfeng Xu & Guanqun Ni, 2016. "Minimax regret vertex 2-sink location problem in dynamic path networks," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 79-94, January.
    20. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2007. "Fast, Fair, and Efficient Flows in Networks," Operations Research, INFORMS, vol. 55(2), pages 215-225, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:73:y:2011:i:3:p:301-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.