IDEAS home Printed from https://ideas.repec.org/a/vrs/itmasc/v16y2013i1p53-59n8.html
   My bibliography  Save this article

Algorithm for Monitoring Minimum Cost in Fuzzy Dynamic Networks

Author

Listed:
  • Bozhenyuk Alexander
  • Gerasimenko Evgeniya

    (Southern Federal University)

Abstract

The present paper examines the task of minimum cost flow finding in a fuzzy dynamic network with lower flow bounds. The distinguishing feature of this problem statement lies in the fuzzy nature of the network parameters, such as flow bounds, transmission costs and transit times. The arcs of the considered network have lower bounds. Another feature of this task is that fuzzy flow bounds, costs and transit times can vary depending on the flow departure time. Algorithm, which implements the solution of considered problem, is proposed.

Suggested Citation

  • Bozhenyuk Alexander & Gerasimenko Evgeniya, 2013. "Algorithm for Monitoring Minimum Cost in Fuzzy Dynamic Networks," Information Technology and Management Science, Sciendo, vol. 16(1), pages 53-59, December.
  • Handle: RePEc:vrs:itmasc:v:16:y:2013:i:1:p:53-59:n:8
    DOI: 10.2478/itms-2013-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/itms-2013-0008
    Download Restriction: no

    File URL: https://libkey.io/10.2478/itms-2013-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cai, X. & Sha, D. & Wong, C. K., 2001. "Time-varying minimum cost flow problems," European Journal of Operational Research, Elsevier, vol. 131(2), pages 352-374, June.
    2. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    3. Ahuja, Ravindra & Orlin, James & Pallottino, Stefano & Scutella, Maria, 2003. "Dynamic Shortest Paths Minimizing Travel Times And Costs," Working papers 4390-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Khodayifar & M. A. Raayatpanah & P. M. Pardalos, 2019. "A polynomial time algorithm for the minimum flow problem in time-varying networks," Annals of Operations Research, Springer, vol. 272(1), pages 29-39, January.
    2. Koch, Ronald & Nasrabadi, Ebrahim, 2014. "Flows over time in time-varying networks: Optimality conditions and strong duality," European Journal of Operational Research, Elsevier, vol. 237(2), pages 580-589.
    3. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    4. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    5. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    6. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    7. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    8. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2021. "A time-expanded network reduction matheuristic for the logistics service network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    9. Urmila Pyakurel & Tanka Nath Dhamala & Stephan Dempe, 2017. "Efficient continuous contraflow algorithms for evacuation planning problems," Annals of Operations Research, Springer, vol. 254(1), pages 335-364, July.
    10. Ronald Koch & Ebrahim Nasrabadi & Martin Skutella, 2011. "Continuous and discrete flows over time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 301-337, June.
    11. Yosuke Hanawa & Yuya Higashikawa & Naoyuki Kamiyama & Naoki Katoh & Atsushi Takizawa, 2018. "The mixed evacuation problem," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1299-1314, November.
    12. Anke Stieber & Armin Fügenschuh, 2022. "Dealing with time in the multiple traveling salespersons problem with moving targets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 991-1017, September.
    13. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
    14. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    15. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    16. Lim, Gino J. & Zangeneh, Shabnam & Reza Baharnemati, M. & Assavapokee, Tiravat, 2012. "A capacitated network flow optimization approach for short notice evacuation planning," European Journal of Operational Research, Elsevier, vol. 223(1), pages 234-245.
    17. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    18. Hongmei Li & Yinfeng Xu & Guanqun Ni, 2016. "Minimax regret vertex 2-sink location problem in dynamic path networks," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 79-94, January.
    19. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2007. "Fast, Fair, and Efficient Flows in Networks," Operations Research, INFORMS, vol. 55(2), pages 215-225, April.
    20. Wang, Yan & Wang, Junwei, 2019. "Integrated reconfiguration of both supply and demand for evacuation planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 82-94.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:itmasc:v:16:y:2013:i:1:p:53-59:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.