IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v55y2008i8p785-799.html
   My bibliography  Save this article

Dynamic evacuation routes for personnel on a naval ship

Author

Listed:
  • Francisco Pérez‐Villalonga
  • Javier Salmerón
  • Kevin Wood

Abstract

We propose a dynamic escape route system for emergency evacuation of a naval ship. The system employs signals that adapt to the causative contingency and the crew's physical distribution about the ship. A mixed‐integer nonlinear programming model, with underlying network structure, optimizes the evacuation process. The network's nodes represent compartments, closures (e.g., doors and hatches) and intersections, while arcs represent various types of passageways. The objective function integrates two potentially conflicting factors: average evacuation time and the watertight and airtight integrity of the ship after evacuation. A heuristic solves the model approximately using a sequence of mixed‐integer linear approximating problems. Using data for a Spanish frigate, with standard static routes specified by the ship's designers, computational tests show that the dynamic system can reduce average evacuation times, nearly 23%, and can improve a combined measure of ship integrity by up to 50%. In addition, plausible design changes to the frigate yield further, substantial improvements. Published 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008

Suggested Citation

  • Francisco Pérez‐Villalonga & Javier Salmerón & Kevin Wood, 2008. "Dynamic evacuation routes for personnel on a naval ship," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 785-799, December.
  • Handle: RePEc:wly:navres:v:55:y:2008:i:8:p:785-799
    DOI: 10.1002/nav.20314
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20314
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Choi, W. & Hamacher, H. W. & Tufekci, S., 1988. "Modeling of building evacuation problems by network flows with side constraints," European Journal of Operational Research, Elsevier, vol. 35(1), pages 98-110, April.
    2. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    3. L. G. Chalmet & R. L. Francis & P. B. Saunders, 1982. "Network Models for Building Evacuation," Management Science, INFORMS, vol. 28(1), pages 86-105, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yapeng & Xiao, Qin & Gu, Jiayang & Cai, Wei & Hu, Min, 2024. "Modeling and solving Passenger ship evacuation arrangement problem," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bretschneider, S. & Kimms, A., 2011. "A basic mathematical model for evacuation problems in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 523-539, July.
    2. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    3. Shin, Youngchul & Moon, Ilkyeong, 2023. "Robust building evacuation planning in a dynamic network flow model under collapsible nodes and arcs," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    4. Douglas Bish & Esra Agca & Roger Glick, 2014. "Decision support for hospital evacuation and emergency response," Annals of Operations Research, Springer, vol. 221(1), pages 89-106, October.
    5. Jian Li & Kaan Ozbay, 2015. "Evacuation Planning with Endogenous Transportation Network Degradations: A Stochastic Cell-Based Model and Solution Procedure," Networks and Spatial Economics, Springer, vol. 15(3), pages 677-696, September.
    6. Lovas, Gunnar G., 1995. "On performance measures for evacuation systems," European Journal of Operational Research, Elsevier, vol. 85(2), pages 352-367, September.
    7. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    8. Simone Göttlich & Sebastian Kühn & Jan Peter Ohst & Stefan Ruzika, 2016. "Evacuation modeling: a case study on linear and nonlinear network flow models," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 219-239, September.
    9. Jorge A. Huertas & Daniel Duque & Ethel Segura-Durán & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2020. "Evacuation dynamics: a modeling and visualization framework," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 661-691, September.
    10. Nadine Baumann & Martin Skutella, 2009. "Earliest Arrival Flows with Multiple Sources," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 499-512, May.
    11. Marc Goerigk & Ismaila Abderhamane Ndiaye, 2016. "Robust flows with losses and improvability in evacuation planning," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 241-270, September.
    12. Horst Hamacher & Stephanie Heller & Benjamin Rupp, 2013. "Flow location (FlowLoc) problems: dynamic network flows and location models for evacuation planning," Annals of Operations Research, Springer, vol. 207(1), pages 161-180, August.
    13. Yu-Ting Hsu & Srinivas Peeta, 2015. "Clearance Time Estimation for Incorporating Evacuation Risk in Routing Strategies for Evacuation Operations," Networks and Spatial Economics, Springer, vol. 15(3), pages 743-764, September.
    14. K L Poh & K W Choo & C G Wong, 2005. "A heuristic approach to the multi-period multi-commodity transportation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 708-718, June.
    15. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    16. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    17. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    18. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    19. S. Khodayifar & M. A. Raayatpanah & P. M. Pardalos, 2019. "A polynomial time algorithm for the minimum flow problem in time-varying networks," Annals of Operations Research, Springer, vol. 272(1), pages 29-39, January.
    20. H. W. Hamacher & S. Tufekci, 1987. "On the use of lexicographic min cost flows in evacuation modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(4), pages 487-503, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:55:y:2008:i:8:p:785-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.