IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v26y2021i2d10.1007_s11027-021-09946-5.html
   My bibliography  Save this article

Role of the Finnish forest industry in mitigating global change: energy use and greenhouse gas emissions towards 2035

Author

Listed:
  • Satu Lipiäinen

    (Lappeenranta-Lahti University of Technology LUT)

  • Esa Vakkilainen

    (Lappeenranta-Lahti University of Technology LUT)

Abstract

The objective of this paper is to analyse role of forest industry in meeting energy and climate targets that aim to mitigating global change. Finland as an important forest industry country with the ambitious target of becoming carbon neutral by 2035 is selected to a target county. This study aims to present a plausible assessment of the future of the Finnish forest industry until 2035 based on literature and a scenario building approach. The focus is on energy use and fossil carbon dioxide (CO2) emissions. The results suggest that electricity consumption will decrease, whereas electricity production will increase, which indicates that forest industry can provide more renewable electricity to the grid. Heat consumption may even increase as a result from building new biorefineries, but those mills can most probably meet their heat demand by combusting biofuels. Changes in forest industry’s direct fossil CO2 emissions can reduce Finnish fossil CO2 emissions 2─4% in comparison to 2018. Biofuels production is likely to rise, but the extent remains to be seen. It is concluded that the Finnish forest industry can contribute significantly to meeting national climate policy targets, and forest industry in general can play a role in mitigating global change. Additionally, it was found that development of the Finnish forest industry will probably be limited by the requirement for sustainable wood harvesting, which may also be a problem for other forest industry countries.

Suggested Citation

  • Satu Lipiäinen & Esa Vakkilainen, 2021. "Role of the Finnish forest industry in mitigating global change: energy use and greenhouse gas emissions towards 2035," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(2), pages 1-19, February.
  • Handle: RePEc:spr:masfgc:v:26:y:2021:i:2:d:10.1007_s11027-021-09946-5
    DOI: 10.1007/s11027-021-09946-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-021-09946-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-021-09946-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnsson, Simon & Andersson, Elias & Thollander, Patrik & Karlsson, Magnus, 2019. "Energy savings and greenhouse gas mitigation potential in the Swedish wood industry," Energy, Elsevier, vol. 187(C).
    2. Kenneth Möllersten & Lin Gao & Jinyue Yan, 2006. "CO 2 Capture in Pulp and Paper Mills: CO 2 Balances and Preliminary Cost Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1129-1150, September.
    3. Buongiorno, Joseph & Zhang, Dali & Rytkonen, Antti & Zhang, Yibing & Zhu, Shushuai & Tomberlin, David, 1998. "Long-Term Forecasting Of International Forest Product Markets: The Gfpm Model And Implications For Europe," Conference Papers 14478, University of Minnesota, Center for International Food and Agricultural Policy.
    4. Marcelo Hamaguchi & Marcelo Cardoso & Esa Vakkilainen, 2012. "Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects," Energies, MDPI, vol. 5(7), pages 1-22, July.
    5. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    6. Buongiorno, Joseph, 1996. "Forest sector modeling: a synthesis of econometrics, mathematical programming, and system dynamics methods," International Journal of Forecasting, Elsevier, vol. 12(3), pages 329-343, September.
    7. Guilherme Fracaro & Esa Vakkilainen & Marcelo Hamaguchi & Samuel Nelson Melegari de Souza, 2012. "Energy Efficiency in the Brazilian Pulp and Paper Industry," Energies, MDPI, vol. 5(9), pages 1-23, September.
    8. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    9. Satu Kähkönen & Esa Vakkilainen & Timo Laukkanen, 2019. "Impact of Structural Changes on Energy Efficiency of Finnish Pulp and Paper Industry," Energies, MDPI, vol. 12(19), pages 1-12, September.
    10. Ericsson, Karin & Nilsson, Lars J. & Nilsson, Måns, 2011. "New energy strategies in the Swedish pulp and paper industry--The role of national and EU climate and energy policies," Energy Policy, Elsevier, vol. 39(3), pages 1439-1449, March.
    11. Johnston, Craig M.T., 2016. "Global paper market forecasts to 2030 under future internet demand scenarios," Journal of Forest Economics, Elsevier, vol. 25(C), pages 14-28.
    12. Nystrom, Ingrid & Cornland, Deborah W., 2003. "Strategic choices: Swedish climate intervention policies and the forest industry's role in reducing CO2 emissions," Energy Policy, Elsevier, vol. 31(10), pages 937-950, August.
    13. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    14. Katja Kuparinen & Esa Vakkilainen & Tero Tynjälä, 2019. "Biomass-based carbon capture and utilization in kraft pulp mills," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1213-1230, October.
    15. Nathalie Trudeau & Cecilia Tam & Dagmar Graczyk & Peter Taylor, 2011. "Energy Transition for Industry: India and the Global Context," IEA Energy Papers 2011/2, OECD Publishing.
    16. Riikka Siljander & Tommi Ekholm, 2018. "Integrated scenario modelling of energy, greenhouse gas emissions and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 783-802, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slavec, Ana & Hoeben, Annechien D. & Moreno-Torres, Miguel & Primožič, Lea & Stern, Tobias, 2023. "When intentions do not matter: Climate change mitigation and adaptation innovations in the Forest-based sector," Forest Policy and Economics, Elsevier, vol. 157(C).
    2. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satu Kähkönen & Esa Vakkilainen & Timo Laukkanen, 2019. "Impact of Structural Changes on Energy Efficiency of Finnish Pulp and Paper Industry," Energies, MDPI, vol. 12(19), pages 1-12, September.
    2. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    3. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Figueiredo, Paulo N., 2016. "Evolution of the short-fiber technological trajectory in Brazil's pulp and paper industry: The role of firm-level innovative capability-building and indigenous institutions," Forest Policy and Economics, Elsevier, vol. 64(C), pages 1-14.
    5. Lauri, Pekka & Forsell, Nicklas & Di Fulvio, Fulvio & Snäll, Tord & Havlik, Petr, 2021. "Material substitution between coniferous, non-coniferous and recycled biomass – Impacts on forest industry raw material use and regional competitiveness," Forest Policy and Economics, Elsevier, vol. 132(C).
    6. Satu Lipiäinen & Eeva-Lotta Apajalahti & Esa Vakkilainen, 2023. "Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions," Energies, MDPI, vol. 16(2), pages 1-18, January.
    7. Katja Kuparinen & Satu Lipiäinen & Esa Vakkilainen & Timo Laukkanen, 2023. "Effect of biomass-based carbon capture on the sustainability and economics of pulp and paper production in the Nordic mills," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 648-668, January.
    8. Kong, Lingbo & Hasanbeigi, Ali & Price, Lynn & Liu, Huanbin, 2017. "Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 74-84.
    9. Hurmekoski, Elias & Sjølie, Hanne K., 2018. "Comparing forest sector modelling and qualitative foresight analysis: Cases on wood products industry," Journal of Forest Economics, Elsevier, vol. 31(C), pages 11-16.
    10. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    11. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    12. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
    13. Teijo Palander & Kalle Kärhä, 2019. "Improving Energy Efficiency in a Synchronized Road-Transportation System by Using a TFMC (Transportation Fleet-Management Control) in Finland," Energies, MDPI, vol. 12(4), pages 1-15, February.
    14. Hurmekoski, Elias & Lovrić, Marko & Lovrić, Nataša & Hetemäki, Lauri & Winkel, Georg, 2019. "Frontiers of the forest-based bioeconomy – A European Delphi study," Forest Policy and Economics, Elsevier, vol. 102(C), pages 86-99.
    15. Florian Jaehn & Raisa Juopperi, 2019. "A Description of Supply Chain Planning Problems in the Paper Industry with Literature Review," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-39, February.
    16. da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
    17. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    18. Kong, Lingbo & Price, Lynn & Hasanbeigi, Ali & Liu, Huanbin & Li, Jigeng, 2013. "Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China," Applied Energy, Elsevier, vol. 102(C), pages 1334-1342.
    19. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:26:y:2021:i:2:d:10.1007_s11027-021-09946-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.