IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v17y2012i6p601-619.html
   My bibliography  Save this article

Obstacles for CCS deployment: an analysis of discrepancies of perceptions

Author

Listed:
  • Peter Stigson
  • Anders Hansson
  • Mårten Lind

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter Stigson & Anders Hansson & Mårten Lind, 2012. "Obstacles for CCS deployment: an analysis of discrepancies of perceptions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 601-619, August.
  • Handle: RePEc:spr:masfgc:v:17:y:2012:i:6:p:601-619
    DOI: 10.1007/s11027-011-9353-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-011-9353-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-011-9353-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Zwaan, Bob & Gerlagh, Reyer, 2008. "The Economics of Geological CO2 Storage and Leakage," Climate Change Modelling and Policy Working Papers 6372, Fondazione Eni Enrico Mattei (FEEM).
    2. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    3. Minh Ha-Duong & Rodica Loisel, 2009. "Zero is the only acceptable leakage rate for geologically stored CO2: an editorial comment," Post-Print hal-00348128, HAL.
    4. Rai, Varun & Victor, David G. & Thurber, Mark C., 2010. "Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies," Energy Policy, Elsevier, vol. 38(8), pages 4089-4098, August.
    5. Dinica, Valentina, 2006. "Support systems for the diffusion of renewable energy technologies--an investor perspective," Energy Policy, Elsevier, vol. 34(4), pages 461-480, March.
    6. Stigson, Peter & Dotzauer, Erik & Yan, Jinyue, 2009. "Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework," Applied Energy, Elsevier, vol. 86(4), pages 399-406, April.
    7. Hansson, Anders & Bryngelsson, Mårten, 2009. "Expert opinions on carbon dioxide capture and storage--A framing of uncertainties and possibilities," Energy Policy, Elsevier, vol. 37(6), pages 2273-2282, June.
    8. Narita, Daiju, 2009. "Economic optimality of CCS use: a resource-economic model," Kiel Working Papers 1508, Kiel Institute for the World Economy (IfW Kiel).
    9. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    10. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    11. Grönkvist, S. & Bryngelsson, M. & Westermark, M., 2006. "Oxygen efficiency with regard to carbon capture," Energy, Elsevier, vol. 31(15), pages 3220-3226.
    12. David M. Reiner, 2008. "A Looming Rhetorical Gap: A Survey of Public Communications Activities For Carbon Dioxide Capture and Storage Technologies," Working Papers EPRG 0801, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaquan Li & Zhifu Mi & Yi-Ming Wei & Jingli Fan & Yang Yang & Yunbing Hou, 2019. "Flexible options to provide energy for capturing carbon dioxide in coal-fired power plants under the Clean Development Mechanism," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1483-1505, December.
    2. Lan-Cui Liu & Qi Li & Jiu-Tian Zhang & Dong Cao, 2016. "Toward a framework of environmental risk management for CO 2 geological storage in china: gaps and suggestions for future regulations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(2), pages 191-207, February.
    3. Maria João Regufe & Ana Pereira & Alexandre F. P. Ferreira & Ana Mafalda Ribeiro & Alírio E. Rodrigues, 2021. "Current Developments of Carbon Capture Storage and/or Utilization–Looking for Net-Zero Emissions Defined in the Paris Agreement," Energies, MDPI, vol. 14(9), pages 1-26, April.
    4. Lefvert, Adrian & Grönkvist, Stefan, 2024. "Lost in the scenarios of negative emissions: The role of bioenergy with carbon capture and storage (BECCS)," Energy Policy, Elsevier, vol. 184(C).
    5. Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2021. "Fragmented Landscape of European Policies in the Energy Sector: First-Mover Advantages," CESifo Working Paper Series 9093, CESifo.
    6. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Davies, Lincoln L. & Uchitel, Kirsten & Ruple, John, 2013. "Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment," Energy Policy, Elsevier, vol. 59(C), pages 745-761.
    8. Lei Zhu & Xing Yao & Xian Zhang, 2020. "Evaluation of cooperative mitigation: captured carbon dioxide for enhanced oil recovery," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1261-1285, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Dongjie & Liu, Pei & Ma, Linwei & LI, Zheng, 2013. "A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy," Energy Policy, Elsevier, vol. 58(C), pages 319-328.
    2. Moura, Maria Cecilia P. & Branco, David A. Castelo & Peters, Glen P. & Szklo, Alexandre Salem & Schaeffer, Roberto, 2013. "How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1357-1366.
    3. Lilliestam, Johan & Bielicki, Jeffrey M. & Patt, Anthony G., 2012. "Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers," Energy Policy, Elsevier, vol. 47(C), pages 447-455.
    4. Blyth, William & Bunn, Derek & Kettunen, Janne & Wilson, Tom, 2009. "Policy interactions, risk and price formation in carbon markets," Energy Policy, Elsevier, vol. 37(12), pages 5192-5207, December.
    5. Evar, Benjamin, 2011. "Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context," Energy Policy, Elsevier, vol. 39(6), pages 3414-3424, June.
    6. Sathre, Roger & Chester, Mikhail & Cain, Jennifer & Masanet, Eric, 2012. "A framework for environmental assessment of CO2 capture and storage systems," Energy, Elsevier, vol. 37(1), pages 540-548.
    7. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    8. García, Jorge H. & Torvanger, Asbjørn, 2019. "Carbon leakage from geological storage sites: Implications for carbon trading," Energy Policy, Elsevier, vol. 127(C), pages 320-329.
    9. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    10. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns," Applied Energy, Elsevier, vol. 136(C), pages 1110-1131.
    11. Nduagu, Experience & Romão, Inês & Fagerlund, Johan & Zevenhoven, Ron, 2013. "Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration," Applied Energy, Elsevier, vol. 106(C), pages 116-126.
    12. John Michael Humphries Choptiany & Ron Pelot & Kate Sherren, 2014. "An Interdisciplinary Perspective on Carbon Capture and Storage Assessment Methods," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 445-458, May.
    13. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona, 2015. "Unpacking the policy processes for addressing systemic problems: The case of the technological innovation system of offshore wind in Germany," Working Papers "Sustainability and Innovation" S2/2015, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Dinica, Valentina, 2009. "Biomass power: Exploring the diffusion challenges in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1551-1559, August.
    15. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    16. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    17. Kurt Kratena & Michael Wüger, 2012. "Technological Change and Energy Demand in Europe," WIFO Working Papers 427, WIFO.
    18. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    19. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    20. Reinhard Madlener & Weiyu Gao & Ilja Neustadt & Peter Zweifel, 2008. "Promoting renewable electricity generation in imperfect markets: price vs. quantity policies," SOI - Working Papers 0809, Socioeconomic Institute - University of Zurich.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:17:y:2012:i:6:p:601-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.