IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp1110-1131.html
   My bibliography  Save this article

Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns

Author

Listed:
  • Luo, Xianglong
  • Hu, Jiahao
  • Zhao, Jun
  • Zhang, Bingjian
  • Chen, Ying
  • Mo, Songping

Abstract

The sustainable design configuration of utility systems incorporating pollutant emission abatement technologies has an important influence on economic cost, pollutant emission, and energy consumption of the process industry. In this paper, four typical cogeneration systems that address different emission reduction technologies are proposed as candidate structures for utility system design. The proposed systems are a gas boiler-based cogeneration system firing clean natural gas, circulating fluidized bed boiler-based cogeneration system incorporating SO2 abatement during combustion, pulverized coal boiler-based cogeneration system encompassing desulfurization and denitration after combustion, and gas–steam combined cogeneration system firing clean natural gas. The equipment performance, energy consumption, material consumption, pollutant emission, and investment and operation cost models of these cogeneration systems, as well as the corresponding emission abatement processes, are established. A multi-objective mixed integer nonlinear programming (MOMINLP) model is formulated to determine the equipment type (or cogeneration system and emission abatement technology), equipment number, equipment design capacity, and equipment operation load while simultaneously combining the multiple objectives of minimization of economic cost, minimization of environmental effect, and maximization of exergy efficiency. The original MOMINLP model is converted into a multiple objective mixed integer linear programming (MOMILP) model through linear approximation, unit size discretization, and relaxation. The augmented ε-constraint method is applied to identify the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of industrial utility system design optimization was presented. In addition, the best combination of cogeneration system for utility system structure under different objective was introduced. The sensitivity of the solutions to the primary energy source price and power to heat ratio was conducted.

Suggested Citation

  • Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns," Applied Energy, Elsevier, vol. 136(C), pages 1110-1131.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1110-1131
    DOI: 10.1016/j.apenergy.2014.06.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2011. "Modeling and optimization of a utility system containing multiple extractions steam turbines," Energy, Elsevier, vol. 36(5), pages 3501-3512.
    2. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    3. Al-Mayyahi, Mohmmad A. & Hoadley, Andrew F.A. & Rangaiah, G.P., 2013. "A novel graphical approach to target CO2 emissions for energy resource planning and utility system optimization," Applied Energy, Elsevier, vol. 104(C), pages 783-790.
    4. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    5. Kravanja, Zdravko & Čuček, Lidija, 2013. "Multi-objective optimisation for generating sustainable solutions considering total effects on the environment," Applied Energy, Elsevier, vol. 101(C), pages 67-80.
    6. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    7. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    8. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    9. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    10. Stigson, Peter & Dotzauer, Erik & Yan, Jinyue, 2009. "Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework," Applied Energy, Elsevier, vol. 86(4), pages 399-406, April.
    11. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    12. Christidis, Andreas & Koch, Christoph & Pottel, Lothar & Tsatsaronis, George, 2012. "The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets," Energy, Elsevier, vol. 41(1), pages 75-82.
    13. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2012. "Operational planning optimization of multiple interconnected steam power plants considering environmental costs," Energy, Elsevier, vol. 37(1), pages 549-561.
    14. Sayyaadi, Hoseyn, 2009. "Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system," Applied Energy, Elsevier, vol. 86(6), pages 867-879, June.
    15. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2013. "Operational planning optimization of steam power plants considering equipment failure in petrochemical complex," Applied Energy, Elsevier, vol. 112(C), pages 1247-1264.
    16. Meyers, Stephen & Sathaye, Jayant & Goldberg, Beth & Renné, David & Kaupp, Albrecht & Mendis, Mathew & Ernst, John & Kokorin, Alexey & Kerr, Tom, 1997. "International workshop on greenhouse gas mitigation technologies and measures: Summary," Applied Energy, Elsevier, vol. 56(3-4), pages 203-223, March.
    17. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    18. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    19. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed, Mohammed S. & Dooley, Kerry M. & Madron, Frantisek & Knopf, F. Carl, 2016. "Enhanced turbine monitoring using emissions measurements and data reconciliation," Applied Energy, Elsevier, vol. 173(C), pages 355-365.
    2. Zhao, Xiancong & Bai, Hao & Lu, Xin & Shi, Qi & Han, Jiehai, 2015. "A MILP model concerning the optimisation of penalty factors for the short-term distribution of byproduct gases produced in the iron and steel making process," Applied Energy, Elsevier, vol. 148(C), pages 142-158.
    3. Zhu, Qiannan & Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2016. "Mathematical modeling, validation, and operation optimization of an industrial complex steam turbine network-methodology and application," Energy, Elsevier, vol. 97(C), pages 191-213.
    4. Miroslav Variny & Kristián Hanus & Marek Blahušiak & Patrik Furda & Peter Illés & Ján Janošovský, 2021. "Energy and Environmental Assessment of Steam Management Optimization in an Ethylene Plant," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    5. Huang, Xiaojian & Lu, Pei & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Liang, Yingzong & Wang, Chao & Chen, Ying, 2020. "Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle," Energy, Elsevier, vol. 195(C).
    6. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    7. Pérez-Uresti, Salvador I. & Martín, Mariano & Jiménez-Gutiérrez, Arturo, 2019. "Estimation of renewable-based steam costs," Applied Energy, Elsevier, vol. 250(C), pages 1120-1131.
    8. Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2016. "On the optimization of energy systems: Results utilization in the design process," Applied Energy, Elsevier, vol. 178(C), pages 587-599.
    9. Guerras, Lidia S. & Martín, Mariano, 2019. "Optimal gas treatment and coal blending for reduced emissions in power plants: A case study in Northwest Spain," Energy, Elsevier, vol. 169(C), pages 739-749.
    10. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    11. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    12. Huang, Xiaojian & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying & María Ponce-Ortega, José & El-Halwagi, Mahmoud M., 2018. "Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus," Applied Energy, Elsevier, vol. 224(C), pages 448-468.
    13. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    14. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    15. Hu, Zhengbiao & He, Dongfeng & Zhao, Hongbo, 2023. "Multi-objective optimization of energy distribution in steel enterprises considering both exergy efficiency and energy cost," Energy, Elsevier, vol. 263(PB).
    16. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    17. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    18. Charitopoulos, Vassilis M. & Dua, Vivek, 2017. "A unified framework for model-based multi-objective linear process and energy optimisation under uncertainty," Applied Energy, Elsevier, vol. 186(P3), pages 539-548.
    19. Hwangbo, Soonho & Lee, In-Beum & Han, Jeehoon, 2016. "Multi-period stochastic mathematical model for the optimal design of integrated utility and hydrogen supply network under uncertainty in raw material prices," Energy, Elsevier, vol. 114(C), pages 418-430.
    20. Atabay, Dennis, 2017. "An open-source model for optimal design and operation of industrial energy systems," Energy, Elsevier, vol. 121(C), pages 803-821.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xiaojian & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying & María Ponce-Ortega, José & El-Halwagi, Mahmoud M., 2018. "Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus," Applied Energy, Elsevier, vol. 224(C), pages 448-468.
    2. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    3. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2013. "Operational planning optimization of steam power plants considering equipment failure in petrochemical complex," Applied Energy, Elsevier, vol. 112(C), pages 1247-1264.
    4. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    5. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    6. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    7. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    8. Zhang, B.J. & Liu, K. & Luo, X.L. & Chen, Q.L. & Li, W.K., 2015. "A multi-period mathematical model for simultaneous optimization of materials and energy on the refining site scale," Applied Energy, Elsevier, vol. 143(C), pages 238-250.
    9. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    10. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    11. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    12. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    13. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    14. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    15. Vučijak, B. & Kupusović, T. & Midžić-Kurtagić, S. & Ćerić, A., 2013. "Applicability of multicriteria decision aid to sustainable hydropower," Applied Energy, Elsevier, vol. 101(C), pages 261-267.
    16. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    17. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    18. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Huang, Xiaojian & Lu, Pei & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Liang, Yingzong & Wang, Chao & Chen, Ying, 2020. "Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle," Energy, Elsevier, vol. 195(C).
    20. Chen, Yue & Wei, Wei & Liu, Feng & Shafie-khah, Miadreza & Mei, Shengwei & Catalão, João P.S., 2018. "Optimal contracts of energy mix in a retail market under asymmetric information," Energy, Elsevier, vol. 165(PB), pages 634-650.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1110-1131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.