IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v59y2013icp745-761.html
   My bibliography  Save this article

Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment

Author

Listed:
  • Davies, Lincoln L.
  • Uchitel, Kirsten
  • Ruple, John

Abstract

Although a potentially useful climate change mitigation tool, carbon capture and sequestration (CCS) efforts in the United States remain mired in demonstration and development. Prior studies suggest numerous reasons for this stagnation. This article empirically assesses those claims. Using an anonymous opinion survey completed by 229 CCS experts, we identified four primary barriers to CCS commercialization: (1) cost and cost recovery, (2) lack of a price signal or financial incentive, (3) long-term liability risks, and (4) lack of a comprehensive regulatory regime. These results give empirical weight to previous studies suggesting that CCS cost (and cost recovery) and liability risks are primary barriers to the technology. However, the need for comprehensive rather than piecemeal CCS regulation represents an emerging concern not previously singled out in the literature. Our results clearly show that the CCS community sees fragmented regulation as one of the most significant barriers to CCS deployment. Specifically, industry is united in its preference for a federal regulatory floor that is subject to state-level administration and sensitive to local conditions. Likewise, CCS experts share broad confidence in the technology's readiness, despite continued calls for commercial-scale demonstration projects before CCS is widely deployed.

Suggested Citation

  • Davies, Lincoln L. & Uchitel, Kirsten & Ruple, John, 2013. "Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment," Energy Policy, Elsevier, vol. 59(C), pages 745-761.
  • Handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:745-761
    DOI: 10.1016/j.enpol.2013.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513002838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Alphen, Klaas & van Voorst tot Voorst, Quirine & Hekkert, Marko P. & Smits, Ruud E.H.M., 2007. "Societal acceptance of carbon capture and storage technologies," Energy Policy, Elsevier, vol. 35(8), pages 4368-4380, August.
    2. Bowen, Frances, 2011. "Carbon capture and storage as a corporate technology strategy challenge," Energy Policy, Elsevier, vol. 39(5), pages 2256-2264, May.
    3. Hansson, Anders & Bryngelsson, Mårten, 2009. "Expert opinions on carbon dioxide capture and storage--A framing of uncertainties and possibilities," Energy Policy, Elsevier, vol. 37(6), pages 2273-2282, June.
    4. Rickerson, Wilson H. & Sawin, Janet L. & Grace, Robert C., 2007. "If the Shoe FITs: Using Feed-in Tariffs to Meet U.S. Renewable Electricity Targets," The Electricity Journal, Elsevier, vol. 20(4), pages 73-86, May.
    5. Peter Stigson & Anders Hansson & Mårten Lind, 2012. "Obstacles for CCS deployment: an analysis of discrepancies of perceptions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 601-619, August.
    6. Evar, Benjamin, 2011. "Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context," Energy Policy, Elsevier, vol. 39(6), pages 3414-3424, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Paul Marshall, 2022. "A Social Exploration of the West Australian Gorgon Gas, Carbon Capture and Storage Project," Clean Technol., MDPI, vol. 4(1), pages 1-24, February.
    2. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    3. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    4. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Herui Cui & Tian Zhao & Ruirui Wu, 2018. "An Investment Feasibility Analysis of CCS Retrofit Based on a Two-Stage Compound Real Options Model," Energies, MDPI, vol. 11(7), pages 1-19, July.
    6. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).
    7. Fikru, Mahelet G. & Azure, Jessica W.A., 2023. "Renewable energy technologies and carbon capture retrofits are strategic complements," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    8. Marshall, Jonathan Paul, 2016. "Disordering fantasies of coal and technology: Carbon capture and storage in Australia," Energy Policy, Elsevier, vol. 99(C), pages 288-298.
    9. Hetti, Ravihari Kotagoda & Karunathilake, Hirushie & Chhipi-Shrestha, Gyan & Sadiq, Rehan & Hewage, Kasun, 2020. "Prospects of integrating carbon capturing into community scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Ismail Ismail & Vassilis Gaganis, 2023. "Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review," Clean Technol., MDPI, vol. 5(2), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Hong-Hua Qiu & Jing Yang, 2018. "An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Evar, Benjamin, 2011. "Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context," Energy Policy, Elsevier, vol. 39(6), pages 3414-3424, June.
    4. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    5. Lock, Simon J. & Smallman, Melanie & Lee, Maria & Rydin, Yvonne, 2014. "“Nuclear energy sounded wonderful 40 years ago”: UK citizen views on CCS," Energy Policy, Elsevier, vol. 66(C), pages 428-435.
    6. Kraeusel, Jonas & Möst, Dominik, 2012. "Carbon Capture and Storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany," Energy Policy, Elsevier, vol. 49(C), pages 642-651.
    7. Martínez Arranz, Alfonso, 2015. "Carbon capture and storage: Frames and blind spots," Energy Policy, Elsevier, vol. 82(C), pages 249-259.
    8. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    9. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    10. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    11. Krüger, Timmo, 2017. "Conflicts over carbon capture and storage in international climate governance," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 100(1), pages 58-67.
    12. Rosemary Ostfeld & David M Reiner, 2019. "Exploring public support for climate action and renewables in resource-rich economies: The case of Scotland," Working Papers EPRG1934, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Zhang, Dongjie & Liu, Pei & Ma, Linwei & LI, Zheng, 2013. "A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy," Energy Policy, Elsevier, vol. 58(C), pages 319-328.
    14. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    15. Sébastien Chailleux, 2020. "Making the subsurface political: How enhanced oil recovery techniques reshaped the energy transition," Environment and Planning C, , vol. 38(4), pages 733-750, June.
    16. van Os, Herman W.A. & Herber, Rien & Scholtens, Bert, 2014. "Not Under Our Back Yards? A case study of social acceptance of the Northern Netherlands CCS initiative," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 923-942.
    17. Simone Carr-Cornish & Peta Ashworth & John Gardner & Stephen Fraser, 2011. "Exploring the orientations which characterise the likely public acceptance of low emission energy technologies," Climatic Change, Springer, vol. 107(3), pages 549-565, August.
    18. Lewis, Geoffrey McD., 2010. "Estimating the value of wind energy using electricity locational marginal price," Energy Policy, Elsevier, vol. 38(7), pages 3221-3231, July.
    19. Xi Liang & Hengwei Liu & David Reiner, 2014. "Strategies for Financing Large-scale Carbon Capture and Storage Power Plants in China," Cambridge Working Papers in Economics 1430, Faculty of Economics, University of Cambridge.
    20. Moura, Maria Cecilia P. & Branco, David A. Castelo & Peters, Glen P. & Szklo, Alexandre Salem & Schaeffer, Roberto, 2013. "How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1357-1366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:745-761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.