IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v25y2019i3d10.1007_s10985-018-9445-4.html
   My bibliography  Save this article

Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion

Author

Listed:
  • Yuan Wu

    (Duke University)

  • Christina D. Chambers

    (University of California
    University of California)

  • Ronghui Xu

    (University of California
    University of California)

Abstract

This work was motivated by observational studies in pregnancy with spontaneous abortion (SAB) as outcome. Clearly some women experience the SAB event but the rest do not. In addition, the data are left truncated due to the way pregnant women are recruited into these studies. For those women who do experience SAB, their exact event times are sometimes unknown. Finally, a small percentage of the women are lost to follow-up during their pregnancy. All these give rise to data that are left truncated, partly interval and right-censored, and with a clearly defined cured portion. We consider the non-mixture Cox regression cure rate model and adopt the semiparametric spline-based sieve maximum likelihood approach to analyze such data. Using modern empirical process theory we show that both the parametric and the nonparametric parts of the sieve estimator are consistent, and we establish the asymptotic normality for both parts. Simulation studies are conducted to establish the finite sample performance. Finally, we apply our method to a database of observational studies on spontaneous abortion.

Suggested Citation

  • Yuan Wu & Christina D. Chambers & Ronghui Xu, 2019. "Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 507-528, July.
  • Handle: RePEc:spr:lifeda:v:25:y:2019:i:3:d:10.1007_s10985-018-9445-4
    DOI: 10.1007/s10985-018-9445-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-018-9445-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-018-9445-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingwei Peng & Jeremy M. G. Taylor, 2017. "Residual-based model diagnosis methods for mixture cure models," Biometrics, The International Biometric Society, vol. 73(2), pages 495-505, June.
    2. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    3. Jamshidian, Mortaza, 2004. "On algorithms for restricted maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 137-157, March.
    4. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    5. Liu, Hao & Shen, Yu, 2009. "A Semiparametric Regression Cure Model for Interval-Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1168-1178.
    6. Hu, Tao & Xiang, Liming, 2016. "Partially linear transformation cure models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 257-269.
    7. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    8. Li, Yi & Lin, Xihong, 2006. "Semiparametric Normal Transformation Models for Spatially Correlated Survival Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 591-603, June.
    9. K. F. Lam & Hongqi Xue, 2005. "A semiparametric regression cure model with current status data," Biometrika, Biometrika Trust, vol. 92(3), pages 573-586, September.
    10. C. P. Farrington, 2000. "Residuals for Proportional Hazards Models with Interval-Censored Survival Data," Biometrics, The International Biometric Society, vol. 56(2), pages 473-482, June.
    11. Zeng, Donglin & Yin, Guosheng & Ibrahim, Joseph G., 2006. "Semiparametric Transformation Models for Survival Data With a Cure Fraction," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 670-684, June.
    12. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    13. Cheng, Guang & Zhou, Lan & Chen, Xiaohong & Huang, Jianhua Z., 2014. "Efficient estimation of semiparametric copula models for bivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 330-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    2. Pao-sheng Shen & Yingwei Peng & Hsin-Jen Chen & Chyong-Mei Chen, 2022. "Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 68-88, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    2. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    3. Hu, Tao & Xiang, Liming, 2016. "Partially linear transformation cure models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 257-269.
    4. Liu, Xiaoyu & Xiang, Liming, 2021. "Generalized accelerated hazards mixture cure models with interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    5. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    6. Yeqian Liu & Tao Hu & Jianguo Sun, 2017. "Regression analysis of current status data in the presence of a cured subgroup and dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 626-650, October.
    7. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    8. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    9. Shuying Wang & Chunjie Wang & Jianguo Sun, 2021. "An additive hazards cure model with informative interval censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 244-268, April.
    10. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    13. Jue Hou & Christina D. Chambers & Ronghui Xu, 2018. "A nonparametric maximum likelihood approach for survival data with observed cured subjects, left truncation and right-censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 612-651, October.
    14. Lopez-Cheda , Ana & Cao, Ricardo & Jacome, Maria Amalia & Van Keilegom, Ingrid, 2015. "Nonparametric incidence and latency estimation in mixture cure models," LIDAM Discussion Papers ISBA 2015014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Philippe Lambert & Vincent Bremhorst, 2020. "Inclusion of time‐varying covariates in cure survival models with an application in fertility studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 333-354, January.
    16. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    17. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    18. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    19. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:25:y:2019:i:3:d:10.1007_s10985-018-9445-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.