IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v28y2022i4d10.1007_s10985-022-09562-8.html
   My bibliography  Save this article

Accounting for delayed entry into observational studies and clinical trials: length-biased sampling and restricted mean survival time

Author

Listed:
  • Mei-Ling Ting Lee

    (University of Maryland)

  • John Lawrence

    (U.S. Food and Drug Administration)

  • Yiming Chen

    (University of Maryland)

  • G. A. Whitmore

    (McGill University
    Ottawa Hospital Research Institute)

Abstract

Individuals in many observational studies and clinical trials for chronic diseases are enrolled well after onset or diagnosis of their disease. Times to events of interest after enrollment are therefore residual or left-truncated event times. Individuals entering the studies have disease that has advanced to varying extents. Moreover, enrollment usually entails probability sampling of the study population. Finally, event times over a short to moderate time horizon are often of interest in these investigations, rather than more speculative and remote happenings that lie beyond the study period. This research report looks at the issue of delayed entry into these kinds of studies and trials. Time to event for an individual is modelled as a first hitting time of an event threshold by a latent disease process, which is taken to be a Wiener process. It is emphasized that recruitment into these studies often involves length-biased sampling. The requisite mathematics for this kind of sampling and delayed entry are presented, including explicit formulas needed for estimation and inference. Restricted mean survival time (RMST) is taken as the clinically relevant outcome measure. Exact parametric formulas for this measure are derived and presented. The results are extended to settings that involve study covariates using threshold regression methods. Methods adapted for clinical trials are presented. An extensive case illustration for a clinical trial setting is then presented to demonstrate the methods, the interpretation of results, and the harvesting of useful insights. The closing discussion covers a number of important issues and concepts.

Suggested Citation

  • Mei-Ling Ting Lee & John Lawrence & Yiming Chen & G. A. Whitmore, 2022. "Accounting for delayed entry into observational studies and clinical trials: length-biased sampling and restricted mean survival time," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 637-658, October.
  • Handle: RePEc:spr:lifeda:v:28:y:2022:i:4:d:10.1007_s10985-022-09562-8
    DOI: 10.1007/s10985-022-09562-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-022-09562-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-022-09562-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    2. D. Oakes, 2016. "On the win-ratio statistic in clinical trials with multiple types of event," Biometrika, Biometrika Trust, vol. 103(3), pages 742-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiming Chen & Paul J. Smith & Mei-Ling Ting Lee, 2023. "Causal Inference in Threshold Regression and the Neural Network Extension (TRNN)," Stats, MDPI, vol. 6(2), pages 1-24, April.
    2. Chrys Caroni, 2022. "Regression Models for Lifetime Data: An Overview," Stats, MDPI, vol. 5(4), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Mao, 2023. "On restricted mean time in favor of treatment," Biometrics, The International Biometric Society, vol. 79(1), pages 61-72, March.
    2. Xiaodong Luo & Hui Quan, 2020. "Some Meaningful Weighted Log-Rank and Weighted Win Loss Statistics," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 216-224, July.
    3. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    4. David Oakes, 2018. "Survival models and health sequences: discussion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 592-594, October.
    5. Lu Mao, 2023. "Nonparametric inference of general while‐alive estimands for recurrent events," Biometrics, The International Biometric Society, vol. 79(3), pages 1749-1760, September.
    6. Lu Mao & Tuo Wang, 2021. "A class of proportional win‐fractions regression models for composite outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1265-1275, December.
    7. Lu Mao, 2023. "Study design for restricted mean time analysis of recurrent events and death," Biometrics, The International Biometric Society, vol. 79(4), pages 3701-3714, December.
    8. Xiaodong Luo & Hong Tian & Surya Mohanty & Wei Yann Tsai, 2019. "Rejoinder to “on the alternative hypotheses for the win ratio”," Biometrics, The International Biometric Society, vol. 75(1), pages 352-354, March.
    9. Szilárd Nemes & Erik Bülow & Andreas Gustavsson, 2020. "A Brief Overview of Restricted Mean Survival Time Estimators and Associated Variances," Stats, MDPI, vol. 3(2), pages 1-13, May.
    10. Lu Mao & KyungMann Kim & Xinran Miao, 2022. "Sample size formula for general win ratio analysis," Biometrics, The International Biometric Society, vol. 78(3), pages 1257-1268, September.
    11. Chenyang Zhang & Guosheng Yin, 2023. "Bayesian nonparametric analysis of restricted mean survival time," Biometrics, The International Biometric Society, vol. 79(2), pages 1383-1396, June.
    12. Mihai C. Giurcanu & Theodore G. Karrison, 2022. "Nonparametric inference in the accelerated failure time model using restricted means," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 23-39, January.
    13. Lu Mao, 2019. "On the alternative hypotheses for the win ratio," Biometrics, The International Biometric Society, vol. 75(1), pages 347-351, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:28:y:2022:i:4:d:10.1007_s10985-022-09562-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.