IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v28y2022i1d10.1007_s10985-021-09541-5.html
   My bibliography  Save this article

Nonparametric inference in the accelerated failure time model using restricted means

Author

Listed:
  • Mihai C. Giurcanu

    (University of Chicago)

  • Theodore G. Karrison

    (University of Chicago)

Abstract

We propose a nonparametric estimate of the scale-change parameter for characterizing the difference between two survival functions under the accelerated failure time model using an estimating equation based on restricted means. Advantages of our restricted means based approach compared to current nonparametric procedures is the strictly monotone nature of the estimating equation as a function of the scale-change parameter, leading to a unique root, as well as the availability of a direct standard error estimate, avoiding the need for hazard function estimation or re-sampling to conduct inference. We derive the asymptotic properties of the proposed estimator for fixed and for random point of restriction. In a simulation study, we compare the performance of the proposed estimator with parametric and nonparametric competitors in terms of bias, efficiency, and accuracy of coverage probabilities. The restricted means based approach provides unbiased estimates and accurate confidence interval coverage rates with efficiency ranging from 81% to 95% relative to fitting the correct parametric model. An example from a randomized clinical trial in head and neck cancer is provided to illustrate an application of the methodology in practice.

Suggested Citation

  • Mihai C. Giurcanu & Theodore G. Karrison, 2022. "Nonparametric inference in the accelerated failure time model using restricted means," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 23-39, January.
  • Handle: RePEc:spr:lifeda:v:28:y:2022:i:1:d:10.1007_s10985-021-09541-5
    DOI: 10.1007/s10985-021-09541-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09541-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09541-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    2. Ao Yuan & Mihai Giurcanu & George Luta & Ming T. Tan, 2017. "U-statistics with conditional kernels for incomplete data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 271-302, April.
    3. Lihui Zhao & Brian Claggett & Lu Tian & Hajime Uno & Marc A. Pfeffer & Scott D. Solomon & Lorenzo Trippa & L. J. Wei, 2016. "On the restricted mean survival time curve in survival analysis," Biometrics, The International Biometric Society, vol. 72(1), pages 215-221, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenyang Zhang & Guosheng Yin, 2023. "Bayesian nonparametric analysis of restricted mean survival time," Biometrics, The International Biometric Society, vol. 79(2), pages 1383-1396, June.
    2. Lu Mao, 2023. "On restricted mean time in favor of treatment," Biometrics, The International Biometric Society, vol. 79(1), pages 61-72, March.
    3. Lu Mao, 2023. "Nonparametric inference of general while‐alive estimands for recurrent events," Biometrics, The International Biometric Society, vol. 79(3), pages 1749-1760, September.
    4. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    5. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    6. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    7. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    8. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    9. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    10. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    11. Lu Mao, 2023. "Study design for restricted mean time analysis of recurrent events and death," Biometrics, The International Biometric Society, vol. 79(4), pages 3701-3714, December.
    12. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    13. Anne Eaton & Yifei Sun & James Neaton & Xianghua Luo, 2022. "Nonparametric estimation in an illness‐death model with component‐wise censoring," Biometrics, The International Biometric Society, vol. 78(3), pages 1168-1180, September.
    14. Godwin Yung & Yi Liu, 2020. "Sample size and power for the weighted log‐rank test and Kaplan‐Meier based tests with allowance for nonproportional hazards," Biometrics, The International Biometric Society, vol. 76(3), pages 939-950, September.
    15. Szilárd Nemes & Erik Bülow & Andreas Gustavsson, 2020. "A Brief Overview of Restricted Mean Survival Time Estimators and Associated Variances," Stats, MDPI, vol. 3(2), pages 1-13, May.
    16. Larry F. León & Ray Lin & Keaven M. Anderson, 2020. "On Weighted Log-Rank Combination Tests and Companion Cox Model Estimators," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 225-245, July.
    17. Yasuhiro Hagiwara & Tomohiro Shinozaki & Yutaka Matsuyama, 2020. "G‐estimation of structural nested restricted mean time lost models to estimate effects of time‐varying treatments on a failure time outcome," Biometrics, The International Biometric Society, vol. 76(3), pages 799-810, September.
    18. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    19. Mei-Ling Ting Lee & John Lawrence & Yiming Chen & G. A. Whitmore, 2022. "Accounting for delayed entry into observational studies and clinical trials: length-biased sampling and restricted mean survival time," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 637-658, October.
    20. Julie K. Furberg & Christian B. Pipper & Thomas Scheike, 2021. "Testing equivalence of survival before but not after end of follow-up," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 216-243, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:28:y:2022:i:1:d:10.1007_s10985-021-09541-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.