IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p1749-1760.html
   My bibliography  Save this article

Nonparametric inference of general while‐alive estimands for recurrent events

Author

Listed:
  • Lu Mao

Abstract

Measuring the treatment effect on recurrent events like hospitalization in the presence of death has long challenged statisticians and clinicians alike. Traditional inference on the cumulative frequency unjustly penalizes survivorship as longer survivors also tend to experience more adverse events. Expanding a recently suggested idea of the “while‐alive” event rate, we consider a general class of such estimands that adjust for the length of survival without losing causal interpretation. Given a user‐specified loss function that allows for arbitrary weighting, we define as estimand the average loss experienced per unit time alive within a target period and use the ratio of this loss rate to measure the effect size. Scaling the loss rate by the width of the corresponding time window gives us an alternative, and sometimes more photogenic, way of showing the data. To make inferences, we construct a nonparametric estimator for the loss rate through the cumulative loss and the restricted mean survival time and derive its influence function in closed form for variance estimation and testing. As simulations and analysis of real data from a heart failure trial both show, the while‐alive approach corrects for the false attenuation of treatment effect due to patients living longer under treatment, with increased statistical power as a result. The proposed methods are implemented in the R‐package WA, which is publicly available from the Comprehensive R Archive Network (CRAN).

Suggested Citation

  • Lu Mao, 2023. "Nonparametric inference of general while‐alive estimands for recurrent events," Biometrics, The International Biometric Society, vol. 79(3), pages 1749-1760, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1749-1760
    DOI: 10.1111/biom.13709
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13709
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    2. Thomas H. Scheike & Frank Eriksson & Siri Tribler, 2019. "The mean, variance and correlation for bivariate recurrent event data with a terminal event," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 1029-1049, August.
    3. Lihui Zhao & Brian Claggett & Lu Tian & Hajime Uno & Marc A. Pfeffer & Scott D. Solomon & Lorenzo Trippa & L. J. Wei, 2016. "On the restricted mean survival time curve in survival analysis," Biometrics, The International Biometric Society, vol. 72(1), pages 215-221, March.
    4. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    5. Yining Ye & John D. Kalbfleisch & Douglas E. Schaubel, 2007. "Semiparametric Analysis of Correlated Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 63(1), pages 78-87, March.
    6. Debashis Ghosh & D. Y. Lin, 2000. "Nonparametric Analysis of Recurrent Events and Death," Biometrics, The International Biometric Society, vol. 56(2), pages 554-562, June.
    7. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    2. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    3. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    4. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    5. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    6. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    7. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    8. Lu Mao, 2023. "On restricted mean time in favor of treatment," Biometrics, The International Biometric Society, vol. 79(1), pages 61-72, March.
    9. Xingqiu Zhao & Jie Zhou & Liuquan Sun, 2011. "Semiparametric Transformation Models with Time-Varying Coefficients for Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 67(2), pages 404-414, June.
    10. Xiaoyu Che & John Angus, 2016. "A new joint model of recurrent event data with the additive hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 763-787, October.
    11. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    12. Sundaram Rajeshwari & Ma Ling & Ghoshal Subhashis, 2017. "Median Analysis of Repeated Measures Associated with Recurrent Events in Presence of Terminal Event," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-16, May.
    13. Giuliana Cortese & Thomas H. Scheike, 2022. "Efficient estimation of the marginal mean of recurrent events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1787-1821, November.
    14. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    15. Dandan Liu & Douglas E. Schaubel & John D. Kalbfleisch, 2012. "Computationally Efficient Marginal Models for Clustered Recurrent Event Data," Biometrics, The International Biometric Society, vol. 68(2), pages 637-647, June.
    16. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    17. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
    18. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    19. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    20. Hui Zhao & Yang Li & Jianguo Sun, 2013. "Semiparametric analysis of multivariate panel count data with dependent observation processes and a terminal event," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 379-394, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1749-1760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.