IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i3p742-745..html
   My bibliography  Save this article

On the win-ratio statistic in clinical trials with multiple types of event

Author

Listed:
  • D. Oakes

Abstract

Pocock et al. (2012), following Finkelstein & Schoenfeld (1999), has popularized the win ratio for analysis of controlled clinical trials with multiple types of outcome event. The approach uses pairwise comparisons between patients in the treatment and control groups using a primary outcome, say the time to death, with ties broken using a secondary outcome, say the time to hospitalization. In general the observed pairwise preferences and the weight they attach to the component rankings will depend on the distribution of potential follow-up time. We present expressions for the win and loss probabilities for general bivariate survival models when follow-up of all patients is limited to a specified time horizon. In the special case of a bivariate Lehmann model we show that the win ratio does not depend on this horizon. We show how the win ratio may be estimated nonparametrically or from a parametric model. Extensions to events of three or more types are described. Application of the method of marginal estimation due to Wei et al. (1989) to this problem is described.

Suggested Citation

  • D. Oakes, 2016. "On the win-ratio statistic in clinical trials with multiple types of event," Biometrika, Biometrika Trust, vol. 103(3), pages 742-745.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:742-745.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw026
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Luo & Hui Quan, 2020. "Some Meaningful Weighted Log-Rank and Weighted Win Loss Statistics," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 216-224, July.
    2. Lu Mao & Tuo Wang, 2021. "A class of proportional win‐fractions regression models for composite outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1265-1275, December.
    3. Lu Mao & KyungMann Kim & Xinran Miao, 2022. "Sample size formula for general win ratio analysis," Biometrics, The International Biometric Society, vol. 78(3), pages 1257-1268, September.
    4. Lu Mao, 2023. "On restricted mean time in favor of treatment," Biometrics, The International Biometric Society, vol. 79(1), pages 61-72, March.
    5. David Oakes, 2018. "Survival models and health sequences: discussion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 592-594, October.
    6. Xiaodong Luo & Hong Tian & Surya Mohanty & Wei Yann Tsai, 2019. "Rejoinder to “on the alternative hypotheses for the win ratio”," Biometrics, The International Biometric Society, vol. 75(1), pages 352-354, March.
    7. Mei-Ling Ting Lee & John Lawrence & Yiming Chen & G. A. Whitmore, 2022. "Accounting for delayed entry into observational studies and clinical trials: length-biased sampling and restricted mean survival time," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 637-658, October.
    8. Lu Mao, 2019. "On the alternative hypotheses for the win ratio," Biometrics, The International Biometric Society, vol. 75(1), pages 347-351, March.
    9. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:742-745.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.