IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i1p215-221.html
   My bibliography  Save this article

On the restricted mean survival time curve in survival analysis

Author

Listed:
  • Lihui Zhao
  • Brian Claggett
  • Lu Tian
  • Hajime Uno
  • Marc A. Pfeffer
  • Scott D. Solomon
  • Lorenzo Trippa
  • L. J. Wei

Abstract

type="main" xml:lang="en"> For a study with an event time as the endpoint, its survival function contains all the information regarding the temporal, stochastic profile of this outcome variable. The survival probability at a specific time point, say t, however, does not transparently capture the temporal profile of this endpoint up to t. An alternative is to use the restricted mean survival time (RMST) at time t to summarize the profile. The RMST is the mean survival time of all subjects in the study population followed up to t, and is simply the area under the survival curve up to t. The advantages of using such a quantification over the survival rate have been discussed in the setting of a fixed-time analysis. In this article, we generalize this approach by considering a curve based on the RMST over time as an alternative summary to the survival function. Inference, for instance, based on simultaneous confidence bands for a single RMST curve and also the difference between two RMST curves are proposed. The latter is informative for evaluating two groups under an equivalence or noninferiority setting, and quantifies the difference of two groups in a time scale. The proposal is illustrated with the data from two clinical trials, one from oncology and the other from cardiology.

Suggested Citation

  • Lihui Zhao & Brian Claggett & Lu Tian & Hajime Uno & Marc A. Pfeffer & Scott D. Solomon & Lorenzo Trippa & L. J. Wei, 2016. "On the restricted mean survival time curve in survival analysis," Biometrics, The International Biometric Society, vol. 72(1), pages 215-221, March.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:215-221
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenyang Zhang & Guosheng Yin, 2023. "Bayesian nonparametric analysis of restricted mean survival time," Biometrics, The International Biometric Society, vol. 79(2), pages 1383-1396, June.
    2. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    3. Yasuhiro Hagiwara & Tomohiro Shinozaki & Yutaka Matsuyama, 2020. "G‐estimation of structural nested restricted mean time lost models to estimate effects of time‐varying treatments on a failure time outcome," Biometrics, The International Biometric Society, vol. 76(3), pages 799-810, September.
    4. Lu Mao, 2023. "On restricted mean time in favor of treatment," Biometrics, The International Biometric Society, vol. 79(1), pages 61-72, March.
    5. Julie K. Furberg & Christian B. Pipper & Thomas Scheike, 2021. "Testing equivalence of survival before but not after end of follow-up," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 216-243, April.
    6. Lu Mao, 2023. "Nonparametric inference of general while‐alive estimands for recurrent events," Biometrics, The International Biometric Society, vol. 79(3), pages 1749-1760, September.
    7. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    8. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    9. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    10. Larry F. León & Ray Lin & Keaven M. Anderson, 2020. "On Weighted Log-Rank Combination Tests and Companion Cox Model Estimators," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 225-245, July.
    11. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    12. Anne Eaton & Yifei Sun & James Neaton & Xianghua Luo, 2022. "Nonparametric estimation in an illness‐death model with component‐wise censoring," Biometrics, The International Biometric Society, vol. 78(3), pages 1168-1180, September.
    13. Xin Wang & Douglas E. Schaubel, 2018. "Modeling restricted mean survival time under general censoring mechanisms," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 176-199, January.
    14. Godwin Yung & Yi Liu, 2020. "Sample size and power for the weighted log‐rank test and Kaplan‐Meier based tests with allowance for nonproportional hazards," Biometrics, The International Biometric Society, vol. 76(3), pages 939-950, September.
    15. Mihai C. Giurcanu & Theodore G. Karrison, 2022. "Nonparametric inference in the accelerated failure time model using restricted means," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 23-39, January.
    16. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    17. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:215-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.